
2D Barcode FMX Components

User Manual
Version: 10.2.1.990

Copyright © 2001-2024 Han-soft Corporation. All rights reserved.

2024-12-02

http://www.han-soft.com

Chapter 1. Introduction

1.1 Overview

2D Barcode FMX Components is the most flexible and powerful FMX components package which lets you to easily add
advanced 2D barcode generation and printing features to your application.

2D Barcode FMX Components supports most popular Matrix and Stacked 2D Barcode Symbologies/Standards,
including Aztec Code, Aztec Runes, Code 16K, Data Matrix (ECC 000-140, ECC 200), MaxiCode, PDF417, QR Code
2005, Micro QR Code, MicroPDF417.

All RSS barcode symbologies are supported, including RSS-14, RSS-14 Truncated, RSS-14 Stacked, RSS-14 Stacked
Omnidirectional, RSS Limited, RSS Expanded, and RSS Expanded Stacked.

Delphi and C++ Builder XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, and 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4
Sydney, 11.3 Alexandria, 12.2 Patch 1, 2 Athens are supported.

All of 32-bit Windows, 64-bit Windows, 32-bit Mac OSX, 64-bit Mac OSX (X86 & ARM), 32-bit iOS, 64-bit iOS, 32-bit
Android, 64-bit Android components are included (depend on the version of your RAD Studio).

2D Barcode FMX Components are easy to use. Developers use them like any other FMX component.

1.2 Main features

Allows to draw the barcode symbol to canvas (with scaling and rotating).

Allows to print the barcode symbol to paper (with scaling and rotating).

Ability to save barcode symbol in a variety of picture formats.

Ability to encode the data block into a barcode symbol.

Most popular matrix and stacked 2 dimensional barcode symbologies are supported.

All RSS barcode symbologies are supported.

The LiveBindings database function is supported.

The RAD Studio (Delphi and C++ Builder) XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2
Tokyo, 10.3 Rio, 10.4 Sydney, and 11.3 Alexandria, 12.2 Patch 1, 2 Athens are supported.

All of 32-bit Windows, 64-bit Windows, 32-bit Mac OSX, 64-bit Mac OSX (X86 & ARM), 32-bit iOS, 64-bit iOS, 32-
bit Android, 64-bit Android components are included (depend on the version of your RAD Studio).

Structured append, ECI, etc. features are supported.

2D Barcode FMX Components User Manual

9

It is visible in design time.

Ability to scale and rotate the barcode symbols.

Foreground and background colors of barcode symbol can be changed freely.

It's easy to use, and it has the excellent functionality.

It's a very popular 2D barcode components package.

2D Barcode FMX Components User Manual

10

Chapter 2. Installation

2.1 Trial user

Installation step by step:

1. Before installing the components package, please close all RAD Studio (Delphi and C++ Builder) IDEs.

Note, for each IDE, if it's a clean installation, please run it at least once before installing the components package,
then closes it and continues installation.

2. Run the installation file barcodefmx2d_tri.exe, and then click on the "Next" button in the installation dialog box.

3. Read the End-User License Agreement. You must accept the terms of this agreement before continuing with the
installation. And then click on the "Next" button.

4. Specify a target folder (it will be created if does not exist), the components package will be installed into it. And
then click on the "Next" button.

5. All supported RAD Studio (Delphi and C++ Builder) IDEs will be listed automatically. Please select the IDEs you
want to install to them. And then click on the "Next" button.

6. Specify a shortcuts folder in "Start Menu" for the components package. And then click on the "Next" button. Later,
you can open the manual or remove the components package in the shortcuts folder.

7. Click on the "Install" button to complete the components package installation.

8. Click on the "Finish" button to close the installation dialog box.

9. You can start your IDE to use the components package now.

Note:

If multi-user accounts want to use the components package, please install it into the same folder in each user
session.

2.2 Registered user

Installation step by step:

1. Before installing the components package, please close all RAD Studio (Delphi and C++ Builder) IDEs.

Note, for each IDE, if it's a clean installation, please run it at least once before installing the components package,
then closes it and continues installation.

2. Please uninstall the trial release using the "Uninstall" shortcuts in the "Start Menu" if it is installed in your computer.

2D Barcode FMX Components User Manual

11

3. Please download the installation package using the download link that's sent from us after you purchase the
components package. If your download link doesn't work, please visit the "Manage your licenses" page to request
a new download link. Please open the page then enter your order ID, license user name or license e-mail address
to locate your order, then click on the oder ID to display it, choose a license and click on the "Request a new
download link", the new download link will be sent to this license e-mail address automatically.

4. Run the installation file barcodefmx2d_ful.exe, and then click on the "Next" button in the installation dialog box.

5. Read the End-User License Agreement. You must accept the terms of this agreement before continuing with the
installation. And then click on the "Next" button.

6. Type your email address and the license key that they are sent from us after you purchase the components
package, they are not case-sensitive. And then click on the "Next" button. If you forgot the license key, please visit
the "Manage your licenses" page to retrieve it. Please open the page then enter your order ID, license user name
or license e-mail address to locate your order, then click on the oder ID to display it, choose a license and click on
the "Retrieve the license key", the license key will be sent to the license e-mail address automatically.

7. Specify a target folder (it will be created if does not exist), the components package will be installed into it. And
then click on the "Next" button.

8. All supported RAD Studio (Delphi and C++ Builder) IDEs will be listed automatically. Please select the IDEs you
want to install to them. And then click on the "Next" button.

9. Specify a shortcuts folder in "Start Menu" for the components package. And then click on the "Next" button. Later,
you can open the manual or remove the components package in the shortcuts folder.

10. Click on the "Install" button to complete the components package installation.

11. Click on the "Finish" button to close the installation dialog box.

12. You can start your IDE to use the components package now.

Note:

If multi-user accounts want to use the components package, please install it into the same folder in each user
session.

After installation, please delete all ".dcu" files in your projects that they are built using the trial release of the
components package, then re-build these projects.

2D Barcode FMX Components User Manual

12

http://www.han-soft.com/releases/barcodefmx2d/license/licenses.php
http://www.han-soft.com/releases/barcodefmx2d/license/licenses.php

Chapter 3. Quick start

3.1 How to use the barcode components

Usage:

1. Put a barcode component, such as the TBarcodeFmx2D_QRCode, TBarcodeFmx2D_PDF417, and
TBarcodeFmx2D_RSS14 to your form.

2. Put a TImage control to your form.

3. Set the Image property of the barcode component to the TImage control.

You can link single TImage control to multiple TBarcodeFmx2D components in order to display multiple barcode
symbols in the TImage control (using the LeftMargin and TopMargin properties to specify the position for every
barcode symbol).

Note:

If the barcode symbol isn't displayed, please check whether the length of barcode text exceeds the maximum length limit,
or whether there is any invalid character in the barcode text.

If you use the Barcode property to encode the barcode text, you can create the OnInvalidLength event handle to catch the
invalid barcode length exception. And create the OnInvalidChar event handle to catch the invalid character in the barcode
text. If you use the Data property to encode the barcode data, you can create the OnInvalidDataLength event handle to
catch the invalid barcode length exception. And create the OnInvalidDataChar event handle to catch the invalid character
in the barcode data.

Also, please check whether the TImage control is large enough to accommodate entire barcode symbol.

3.2 How to use the barcode components with a database

The LiveBindings is supported by the components package. You can use the LiveBindings mechanism to link a
TBarcodeFmx2D barcode component to a data filed in order to encode the data in the database to barcode symbol.

1. Put a TBarcodeFmx2D barcode component, such as the TBarcodeFmx2D_QRCode,
TBarcodeFmx2D_PDF417, and TBarcodeFmx2D_RSS14 to your form. You can set its Image property to a
TImage control in order to display the barcode symbol.

2. Open the "LiveBindings Designer" (right-click on the form then execute the "Bind visually..." menu item), click on
the barcode component in the form to select it, change the "Visible Element" sub-item of the "LiveBindings

2D Barcode FMX Components User Manual

13

Designer" item to true in the "Object Inspector", in order to display it in the "LiveBindings Designer".

3. Right-click on the barcode component in the "LiveBindings Designer", execute the "Bindable Members..." menu
item, check the "Barcode" property or the "Data" property in the "Bindable Members" dialog, click on the "OK"
button to close it.

4. If you want to encode values in a string field to barcode symbol, please link the Barcode property of the
TBarcodeFmx2D barcode component to your data field in the TBindSourceDB component. If you want to encode
values in a binary field to barcode symbol, please link the Data property of the TBarcodeFmx2D barcode
component to your data field in the TBindSourceDB component.

5. If you want to save the barcode symbol to a picture, put a TSaveFmx2D component, such as the
TSaveFmx2D_Bmp, TSaveFmx2D_Png, and TSaveFmx2D_Svg to your form. Set the Barcode2D property of the
TSaveFmx2D component to your barcode component. Then you can use the Save method of the TSaveFmx2D
component to save the barcode symbol to a picture file.

6. Also, you can use the Print method of the TBarcodeFmx2D component to print the barcode symbol to paper, or
use the DrawTo method of the TBarcodeFmx2D component to draw the barcode symbol to any TCanvas.

Note, You can link multiple TBarcodeFmx2D components to a data field in order to represent the data field with multiple
barcode symbols.

3.3 How to print a barcode symbol to paper

Please use Print method of a barcode component to print the barcode symbol to paper. The TImage control isn't required.

For example:

Printer.ActivePrinter.SelectDPI(600, 600);
Printer.BeginDoc;
... { Print other content }
BarcodeFmx2D_QRCode1.Print('1234567890', claBlack, claWhite, true, 20, 20, 0.3);
... { Print other content }
Printer.EndDoc;

or

Printer.ActivePrinter.SelectDPI(600, 600);
Printer.BeginDoc;
... { Print other content }
with BarcodeFmx2D_QRCode1 do
begin
ShowQuietZone := true;
BarColor := claBlack;
SpaceColor := claWhite;
Barcode := '1234567890';
Print(20, 20, 0.3);

end;
... { Print other content }
Printer.EndDoc;

2D Barcode FMX Components User Manual

14

3.4 How to save a barcode symbol to picture file

Usage:

1. Put a TBarcodeFmx2D barcode component, such as the TBarcodeFmx2D_QRCode,
TBarcodeFmx2D_PDF417, and TBarcodeFmx2D_RSS14 to your form.

2. Put a TSaveFmx2D component, such as the TSaveFmx2D_Bmp, TSaveFmx2D_Png, and TSaveFmx2D_Svg to
your form.

3. Set the Barcode2D property of the TSaveFmx2D component to the TBarcodeFmx2D barcode component.

4. Use the Save method of the TSaveFmx2D component to save the barcode symbol to picture file.

Note:

For the TBarcodeFmx2D_MaxiCode component, please use the SaveToFile method of the TImage control that is linked
to the barcode component to save the barcode symbol as a picture file.

For example:

Image1.Bitmap.SaveToFile('D:\2DBarcode.bmp');

Also, You can bind multiple TSaveFmx2D components to a TBarcodeFmx2D barcode component in order to save the
barcode symbol in multipe formats.

3.5 How to copy a barcode symbol to the clipboard

Usage:

1. Put a TBarcodeFmx2D barcode component, such as the TBarcodeFmx2D_QRCode,
TBarcodeFmx2D_PDF417, and TBarcodeFmx2D_RSS14 to your form.

2. Put a TCopyFmx2D component to your form.

3. Set the Barcode2D property of the TCopyFmx2D component to the TBarcodeFmx2D barcode component.

4. Use the Copy method of the TCopyFmx2D component to copy the barcode symbol to the clipboard.

3.6 How to encode the UNICODE text in a 2D barcode symbol

2D Barcode FMX Components User Manual

15

By default, the text will be encoded in UTF-8 ecnoding sheme (the BOM is not placed), you can use other encoding
scheme, such as the ANSI, UTF-16LE, UTF-16BE, etc.

Method 1, please convert the text to your encoding scheme, then assign it to the Data property of the
TBarcodeFmx2D barcode component, such as the TBarcodeFmx2D_QRCode,
TBarcodeFmx2D_DataMatrixECC200, and the TBarcodeFmx2D_PDF417. The BOM may be placed depending
on your application.

For example:

// The text is encoded in UTF-8 format, and the BOM is placed.
var
BarcodeText: string;
BarcodeData: TBytes;
Len: Integer;

begin
....
BarcodeText := '....';
Len := Length(BarcodeText);
SetLength(BarcodeData, Len * 3 + 3);
BarcodeData[0] := $EF;
BarcodeData[1] := $BB;
BarcodeData[2] := $BF;
Len := UnicodeToUtf8(@BarcodeData[3], Len * 3 + 1, PWideChar(BarcodeText),
Len);

if Len > 0 then
SetLength(BarcodeData, Len + 2)

else
SetLength(BarcodeData, 3);

BarcodeFmx2D_QRCode1.Data := BarcodeData;

Method 2, Please create the OnEncode event function for the TBarcodeFmx2D barcode component, such as the
TBarcodeFmx2D_QRCode, TBarcodeFmx2D_DataMatrixECC200, and the TBarcodeFmx2D_PDF417. In the
event function, you can encode the UNICODE text in your encoding scheme. The BOM may be placed depending on
your application.

For example:

var BarcodeText: string;
....
BarcodeText := '....';
BarcodeFmx2D_QRCode1.Barcode := BarcodeText;
....
procedure TForm1.BarcodeFmx2D_QRCode1Encode(Sender: TObject; var Data:
TBytes; Barcode: string);

var
Len: Integer;

begin
// The text is encoded in UTF-8 format, and the BOM is placed.
Len := Length(Barcode);

2D Barcode FMX Components User Manual

16

SetLength(Data, Len * 3 + 3);
Data[0] := $EF;
Data[1] := $BB;
Data[2] := $BF;
Len := UnicodeToUtf8(@Data[3], Len * 3 + 1, PWideChar(Barcode), Len);
if Len > 0 then
SetLength(Data, Len + 2)

else
SetLength(Data, 3);

end;

2D Barcode FMX Components User Manual

17

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

Chapter 4. Reference

4.1 TBarcodeFmx2D

It is the base class of all barcode components. And it cannot be instantiated. It's defined in the pfmxBarcode2d unit.

4.1.1 TBarcodeFmx2D_AztecCode

The component is used to create the Aztec Code 2D Barcodes symbols. It's defined in the pfmxAztecCode unit.

2D Barcode FMX Components User Manual

18

Aztec Code is a two-dimensional matrix symbology whose symbols are nominally square, made up of
square modules on a square grid, with a square bullseye pattern at their center. Aztec Code symbols can
encode from small to large amounts of data with user-selected percentages of error correction. All 256 8-bit
values can be encoded.

Aztec Code is invented by Andrew Longacre, Jr. and Robert Hussey in 1995. The code was published by AIM, Inc. in
1997. It is used for small item marking applications using a wide variety of printing and marking technologies.

Formats

There are two basic formats of Aztec Code symbols:

Compact: There is a 2-ring bullseye pattern in the symbol center. It's useful for encoding shorter messages
efficiently.

Full range: There is a 3-ring bullseye pattern in the symbol center. It supports much larger symbols for longer data
messages.

You can use the SymbolMode property to specify which formats and Aztec Code symbol sizes (see also the "Symbol
sizes" section below) will be automatically selected between the minimum and maximum symbol sizes specified by
corresponding MinSize and MaxSize properties, based on the length of barcode text. It can be one of these values
(defined in the pfmxAztecCode unit):

smNormal: Only the symbol sizes that they are useful for data encoding operation, including all compact symbol
sizes (azSize_15Compact, azSize_19Compact, azSize_23Compact, and azSize_27Compact), and full range
symbol sizes from azSize_31 to azSize_151.

smCompact: Only the symbol sizes in compact format, including the azSize_15Compact, azSize_19Compact,
azSize_23Compact, and azSize_27Compact.

smFullRange: Only the symbol sizes in full range format, including the azSize_19, azSize_23, azSize_27, and
azSize_31 to azSize_151.

smProgram: Only the symbol sizes that they are useful for reader initialization, including azSize_15Compact,
azSize_19, azSize_23, azSize_27, and full range symbol sizes from azSize_31 to azSize_109. Note, in order to
create a reader initialization symbol, a "\p" escape sequence should be placed into the barcode text, and the
AllowEscape property should be set to true. See also the "Escape sequences" section below.

smAll: All symbol sizes, including compact and full range formats.

Symbol sizes

The smallest Aztec Code symbol is 15 * 15 modules square, and the largest is 151 * 151. There are 36 square symbol
sizes available in Aztec Code symbology. These are specified in following table (defined in the pfmxAztecCode unit):

2D Barcode FMX Components User Manual

19

Sizes Formats Layers Dimension (modules)
Maximum data capacities

Digits Text Bytes
azSize_15Compact Compact 1 15 * 15 13 12 6

azSize_19 Full range 1 19 * 19 18 15 8
azSize_19Compact Compact 2 19 * 19 40 33 19

azSize_23 Full range 2 23 * 23 49 40 24
azSize_23Compact Compact 3 23 * 23 70 57 33

azSize_27 Full range 3 27 * 27 84 68 40
azSize_27Compact Compact 4 27 * 27 110 89 53

azSize_31

Full range

4 31 * 31 128 104 62
azSize_37 5 37 * 37 178 144 87
azSize_41 6 41 * 41 232 187 114
azSize_45 7 45 * 45 294 236 145
azSize_49 8 49 * 49 362 291 179
azSize_53 9 53 * 53 433 348 214
azSize_57 10 57 * 57 516 414 256
azSize_61 11 61 * 61 601 482 298
azSize_67 12 67 * 67 691 554 343
azSize_71 13 71 * 71 793 636 394
azSize_75 14 75 * 75 896 718 446
azSize_79 15 79 * 79 1008 808 502
azSize_83 16 83 * 83 1123 900 559
azSize_87 17 87 * 87 1246 998 621
azSize_91 18 91 * 91 1378 1104 687
azSize_95 19 95 * 95 1511 1210 753

azSize_101 20 101 * 101 1653 1324 824
azSize_105 21 105 * 105 1801 1442 898
azSize_109 22 109 * 109 1956 1566 976
azSize_113 23 113 * 113 2116 1694 1056
azSize_117 24 117 * 117 2281 1826 1138
azSize_121 25 121 * 121 2452 1963 1224
azSize_125 26 125 * 125 2632 2107 1314
azSize_131 27 131 * 131 2818 2256 1407
azSize_135 28 135 * 135 3007 2407 1501
azSize_139 29 139 * 139 3205 2565 1600
azSize_143 30 143 * 143 3409 2728 1702
azSize_147 31 147 * 147 3616 2894 1806
azSize_151 32 151 * 151 3832 3067 1914

Note:

Full range symbols with 1, 2, or 3 layers (azSize_19, azSize_23, and azSize_27) are useful only for reader
initialization.

The data capacities shown are based on the recommended error correction levels (23 % of symbol capacity plus 3
codewords).

You can use the MinSize and the MaxSize properties to specify the minimum and maximum sizes for an Aztec Code
symbol. The smallest symbol size that accommodates the barcode text will be automatically selected between the

2D Barcode FMX Components User Manual

20

minimum and maximum symbol sizes.

If the barcode text does not fill the maximum data capacity of the Aztec Code symbol, remaining data capacity of the
symbol will be used as excess error correction. If the barcode text is so long that it cannot be encoded using the maximum
symbol size specified by the MaxSize property, an OnInvalidLength or OnInvalidDataLength event will occur. The
CurrentSize property can be used to get the factual symbol size.

Quiet zones

No quiet zone is required outside the bounds of the Aztec Code symbol. So the minimum values of LeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 0.

Error checking and correcting (ECC)

The design of Aztec Code technically allows a symbol to include as little as none or as much as 99% in error correction
codewords, though both limits are unsound. The recommended level of error correction for normal use is 23% of symbol
capacity plus 3 codewords more. They may also choose to override the default error correction level, specifying either an
alternate minimum error correction percentage or a fixed symbol format and ECC size.

Users, judging their applications to be especially benign or critical, may choose to specify an alternate minimum error
correction percentage (specified by the ECCLevel property), ranging from 0% to 99% plus always, for data security, 3 or
more additional error correction codewords (specified by the ECCCount property). This is called a "minimum" percentage
because, depending on message length, the symbology will typically have to add extra error correction codewords above
this minimum to fill out the symbol.

Some applications will be best served by specifying a fixed size (number of codewords) to be used for all Aztec Code
symbols regardless of their data content. In this case, the ECCLevel property should be set to 0, and the ECCCount
property should be set to a size which includes adequate error correction for the longest message anticipated; then,
typically shorter messages will be encoded with excess error correction, creating more robust symbols for this application.

Character set

1. All 8-bit values can be encoded. The default interpretation shall be:

For values 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII); Note this version
consists of the GO set of ISO/IEC 646 and the CO set of ISO/IEC 6429 with values 28 to 31 modified to FS,
GS, RS and US respectively).

For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).

This interpretation corresponds to ECI 000003.

2. Two non-data characters can be encoded, FNC1 for compatibility with some existing applications and ECI
indicator blocks for the standardized encoding of message interpretation information.

FNC1: The FNC1 character following an application standard agreed with AIM International, identifies a
symbol which conforms to a specific industry standard. FNC1 shall be used as defined in the EAN.UCC
General Specifications either in the first position or implied by the mode character. The FNC1 character
may also be used as a field separator, in which case it will be represented in the transmitted message as
GS character (ASCII value 29). The escape sequence "\f" can be used to place the FNC1 character to
barcode text.

ECI: The escape sequence "\e[m]" can be used to place the ECI indicator block to barcode text. See also
the "Extended Channel Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place the FNC1 characters or the ECI indicator blocks.

2D Barcode FMX Components User Manual

21

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert
them to the barcode text:

\\: Insert a backslash to barcode text.

\f: Insert a FNC1 character to barcode text. See also the "Character set" section above.

\e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation
(ECI)" section below.

\s[<Index>,<Amount>,<Message_ID>]: Insert a structured append block to barcode text in order to create the
symbol in a structured append. See also the "Structured append" section below.

\p: Indicates to create a reader initialization symbol. It can be placed anywhere in the barcode text. Only the
azSize_15Compact, azSize_19, azSize_23, azSize_27, and full range symbol sizes from azSize_31 to azSize_109
are useful for reader initialization symbol, so the SymbolMode property should be set to "smProgram" in order to
create the reader initialization symbol.

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that
of the default character set. Four broad types of interpretations are supported in Aztec Code:

International character sets (or code pages).

General purpose interpretations such as encryption and compaction.

User defined interpretations for closed systems.

Control information for structured append in unbuffered mode.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after
decoding. The ECI is identified by an integer (up to 6 digits) which is encoded in the Aztec Code symbol by the ECI
indicator block. The escape sequence "\e[<ECI_Number>]" is used to place the ECI indicator block to the barcode text:

ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero
is optional.

ECI indicator blocks may be placed anywhere in the barcode text in a single or structured append set of Aztec Code
symbols. For example:

ABC\e[123]DEFabc\e[000003]def

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until
the end of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI may
straddle two or more symbols.

Structured append

In order to fit a non-square area or to handle larger messages than are practical in a single symbol, a data message can
be distributed across several Aztec Code symbols. Up to 26 Aztec Code symbols may be appended in a structured
format to convey more data. If a symbol is part of a structured append this shall be indicated by a structured append block
in barcode text. The escape sequence "\s[<Index>, <Amount>, <Message_ID>]" is used to place the structured append
block to the barcode text:

Index: The position index of the symbol within the set of Aztec Code symbols in the structured append format. It's an
integer between 1 and 26 (including the boundaries) in string format.

2D Barcode FMX Components User Manual

22

Amount: The total amount of the symbol within the set of Aztec Code symbols in the structured append format. It's
an integer between 2 and 26 (including the boundaries) in string format.

Message_ID: An optional message ID. The field is any number of data characters excluding the space character,
and shall be the same for all symbols which comprise the same message. Though the field may be made up of any
characters (except additional spaces), the most efficient encoding will result if it is a string of uppercase letters.

The AllowEscape property should be set to true in order to place the structured append block. The structured append
block may only be placed only once in the barcode text. Also, it shall be placed at beginning of the barcode text. The
OnInvalidChar or OnInvalidDataChar event will occur if the structured append block be placed more than once, or it isn't
placed at beginning of the barcode text. The following is an example of structured append:

\s[2, 5, DESCRIPTION]ABCDEFGabcdefg1234567890

2D Barcode FMX Components User Manual

23

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

Inversed

Mirrored

SymbolMode

BytesAlwaysBackToUpper

MinSize

MaxSize

ECCLevel

ECCCount

AllowEscape

CurrentSize (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.2 TBarcodeFmx2D_AztecRunes

The component is used to create the Aztec Runes 2D Barcode symbols. It's defined in the pfmxAztecRunes unit.

Aztec Runes are a series of small but distinct machine-readable marks designed to be graphically
compatible with Aztec Code. They are in fact just the core symbol of a compact Aztec Code symbol with a

2D Barcode FMX Components User Manual

24

numerically distinct mode message which in this case conveys 8 bits of actual data. Thus they comprise 256 11x11
module square marks which are conveniently found and read by an Aztec Code reader.

Symbol size

Each Aztec Runes symbol is of a fixed size, it is 11 * 11 modules square.

Quiet zones

No quiet zone is required outside the bounds of the Aztec Runes symbol. So the minimum values of LeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 0.

Character set

All 8-bit values can be encoded, every Aztec Runes symbol can encode one 8-bit value, it's expressed in a decimal
integer between 0 and 255 (including the boundaries), in string format, so only numeric characters can be used in the
barcode text.

Data capacity

An integer between 0 and 255 (including the boundaries), in string format. The maximum length of barcode text is limited
to 3 digits. The FixedLength property specifies whether adding leading zeros are required if the length is less than 3 digits.

2D Barcode FMX Components User Manual

25

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

Inversed

Mirrored

FixedLength

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.3 TBarcodeFmx2D_Code16K

The component is used to create the Code 16K 2D Barcode symbols. It's defined in the pfmxCode16K unit.

Code 16K was developed by Ted Williams in 1989 to provide a simple to print and decode multiple row
symbology. It's a continuous, variable-length, stacked 2D barcode symbology that can encode the
complete ASCII 128-character set. Extended ASCII characters (ASCII value 128 to 255) may also be
encoded by using function character.

Each Code 16K symbol contains from 2 to 16 rows. Each row is divided by a separator bar. The top and bottom of the
symbol also have separator bars that extend to the ends of the minimum quiet zones.

Symbol size

Each Code 16K symbol contains from 2 to 16 stacked rows, with 5 ASCII characters per stacked row. The RowHeight
property can be used to specify the height for each stacked row, in modules. The data capacities are listed in following

2D Barcode FMX Components User Manual

26

table:

Rows
Maximum data capacities

Numeric characters ASCII characters
2 14 7
3 24 12
4 34 17
5 44 22
6 54 27
7 64 32
8 74 37
9 84 42

10 94 47
11 104 52
12 114 57
13 124 62
14 134 67
15 144 72
16 154 77

You can use the MinRows and the MaxRows properties to specify the minimum and maximum number of stacked rows for
a Code 16K symbol. They can be one of values from 2 to 16 (defined in the pfmxCode16K unit). The smallest number of
symbol stacked rows that accommodates the barcode text will be automatically selected between minimum and maximum
number of stacked rows.

If the barcode text does not fill the maximum data capacity of the Code 16K symbol, remaining data capacity of the symbol
will be filled by adding the PAD characters automatically. If the barcode text is so long that it cannot be encoded using the
maximum number of stacked rows specified by the MaxRows property, an OnInvalidLength or OnInvalidDataLength event
will occur. You can use the CurrentRows property to get the factual number of stacked rows.

The Code 16K symbol width is 81 modules (inclusive of minimum leading quiet zone and trailing quiet zone). The
minimum row height value is 8 times the module width. So the smallest Code 16K symbol is 81 * 19 modules square and
the largest is 81 * 145 modules square (inclusive of minimum quiet zones, the row height is set to 8 modules, and the
separator bar height is set to 1 module).

The minimum value of the module width is 7.5 mils (0.19 mm). So the minimum physical size is 15.4mm * 3.6mm. The
maximum data density is 208 alphanumeric characters per square inch or 417 numeric digits per square inch when the
symbol is printed at 7.5 mils.

Quiet zones

The leading quiet zone shall be a minimum of 10 modules, the trailing quiet zone shall be a minimum of 1 modules. No top
quiet zone and bottom quiet zone are required outside the bounds of the symbol.

So the minimum value of LeadingQuietZone property is equal to 10, the minimum value of TrailingQuietZone property is
equal to 1, and the minimum value of TopQuietZone, and BottomQuietZone properties are equal to 0.

Character set

All 128 ASCII characters, i.e. ASCII characters 0 to 127 inclusive, in accordance with ISO/IEC 646:1991.

Code 16K has three unique data character sets as code sets A, B and C, all 128 ASCII characters are encoded by
internally switching between all 3 code sets:

2D Barcode FMX Components User Manual

27

Code set A: Includes characters with ASCII values from 00 to 95 (i.e. all of the standard upper case
alphanumeric characters together with the control characters inclusive), and function characters.

Code set B: Includes characters with ASCII values from 32 to 127 (i.e. all of the standard upper case
alphanumeric characters together with the lower case alphabetic characters inclusive), and function
characters.

Code set C: includes the set of 100 digit pairs from 00 to 99 inclusive, as well as seven special characters.
This allows numeric data to be encoded, two data digits per symbol character, at effectively twice the density
of standard data.

The code set will be switched automatically in a Code 16K symbol in order to minimize the symbol size. Also, you
can manually switch the code set by using following escape sequences:

\a: Switch to code set A.

\b: Switch to code set B.

\c: Switch to code set C.

The AllowEscape property should be set to true in order to place these escape sequences. If the symbol mode
specified by the InitialMode property is set to emCodeC_Shift1B, they cannot be used as the first character in the
symbol. If the InitialMode property is set to emCodeC_Shift2B, they cannot be used as the first two characters in the
symbol. In addition they can be placed anywhere within the symbol.

Characters with ASCII values 128 to 255 in accordance with ISO 8859-1:1998 may also be encoded. This is done
by internally using the FNC4 character together with code sets A, B and C.

4 function characters, and PAD character:

FNC1: The FNC1 character following an application standard agreed with AIM International, identifies a
symbol which conforms to a specific industry standard. FNC1 shall be used as defined in the EAN.UCC
General Specifications either in the first position or implied by the mode character. The FNC1 character may
also be used as a field separator, in which case it will be represented in the transmitted message as GS
character (ASCII value 29). The escape sequence "\1" can be used to place the FNC1 character to barcode
text.

FNC2: It's used internally to create a message append defined below. The escape sequence "\2" can be
used to place the FNC2 character to barcode text. In general, you shouldn't place the FNC2 to the barcode
text, it's used internally by the component when the symbol is in a message append. See also the "Message
append" section below.

FNC3: Initialize. This instructs the reader to interpret the data contained in the symbol for reader initialization
or programming. The FNC3 may be placed anywhere within the symbol. The escape sequence "\3" can be
used to place the FNC3 character to barcode text.

FNC4: It's used internally together with code sets A, B and C to encode the extended ASCII characters (ASCII
values from 128 to 255). The FNC4 character cannot be placed to barcode text directly, it's used internally by
the component.

PAD: If the barcode text does not fill the maximum data capacity of a Code 16K symbol, PAD characters will
be added automatically to fill the remaining data capacity of the symbol. Also, you can place a PAD character
anywhere in the barcode symbol by using the escape sequence "\p", in order to create the special Code 16K
symbol for closed system.

The AllowEscape property should be set to true in order to place the functions characters, or the PAD character.

Initial modes

2D Barcode FMX Components User Manual

28

Code 16K has initial modes which are used to specify the initial code set and may also represent an implied leading
FNC1 character or implied leading SHIFT B character as shown in following table. The code set will be automatically
switched if a character is encountered that cannot be encoded by current code set. And implied characters function as if
they were actual symbol characters but don not occupy any space.

There are seven kinds of initial mode, from 0 to 6, and a kind of extended data length mode. The initial mode values from
emCodeA to emExtended, corresponding to these modes, are defined in the pfmxCode16K unit. These modes and their
values are listed in following table:

Initial
Mode Value

Initial
code
set

Implied
character Description

0 emCodeA A (None) The code set will be automatically switched if another code set
character is encountered.1 emCodeB B (None)

2 emCodeC C (None)
3 emCodeB_FNC1 B FNC1
4 emCodeC_FNC1 C FNC1

5 emCodeC_Shift1B C SHIFT B

First character excepting the message append block (if exists), must
be code set B character (ASCII 32 - ASCII 127), otherwise an
OnInvalidChar or OnInvalidDataChar event will occur. The code set
will be automatically switched if another code set character is
encountered.

6 emCodeC_Shift2B C Double
SHIFT B

First two characters excepting the message append block (if exists),
must be code set B characters (ASCII 32 - ASCII 127), otherwise an
OnInvalidChar or OnInvalidDataChar event will occur. The code set
will be automatically switched if another code set character is
encountered.

Extended
data

length
mode

emMode_Extended B None

Indicates to create a Code 16K barcode symbol in extended data
length mode. An extended data length mode block is required, and it
should be placed at beginning of barcode text, otherwiset the
OnInvalidChar or OnInvalidDataChar event will occur. See also the
"Extended data length mode" section below.

The InitialMode property can be used to specify the initial mode for a Code 16K symbol. It can be one of values shown in
table above, corresponding to the initial modes 0 to 6, and the extended data length mode. Also, it can be set to emAuto
(defined in the pfmxCode16K unit), in this case, one of values from emCodeA to emModeC_Shift2B, corresponding to the
initial modes 0 to 6 shown in table above will be selected automatically, depending on the barcode text, in order to
minimize the symbol size.

You can always use the CurrentMode property to get the factual initial mode.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert
them to the barcode text:

\\: Insert a backslash to barcode text.

\1: Insert a FNC1 character to barcode text. See also the "Character set" section above.

\2: Insert a FNC2 character to barcode text. See also the "Character set" section above.

\3: Insert a FNC3 character to barcode text. See also the "Character set" section above.

\a: Manually switch code set to code set A. See also the "Character set" section above.

\b: Manually switch code set to code set B. See also the "Character set" section above.

\c: Manually switch code set to code set C. See also the "Character set" section above.

2D Barcode FMX Components User Manual

29

\p: Insert a PAD character to barcode text. See also the "Character set" section above.

\m[<Index>, <Amount>]: Insert a extended data length mode block to barcode text in order to create the symbol in
extended data length mode. See also the "Extended data length mode" section below.

\s[<Index>, <Amount>]: Insert a message append block to barcode text in order to create the symbol in a
message append. See also the "Message append" section below.

Extended data length mode

The extended data length mode is used to encode data beyond the capacity of a single Code 16K symbol. In the extended
data length mode, up to 107 Code 16K 16-rows symbols may be arranged to convey more data (up to 8025 ASCII
characters, or 16050 numeric digits). If a symbol is part of these extended data length mode symbols, this shall be
indicated by extended data length mode block in barcode text. The escape sequence "\m[<Index>, <Amount>]" is used to
place the extended data length mode block to the barcode text:

Index: The position index of the symbol within the set of Code 16K symbols in the extended data length mode. It's
an integer between 1 and 107 (including the boundaries) in string format.

Amount: The total amount of the symbol within the set of Code 16K symbols in the extended data length mode. It's
an integer between 2 and 107 (including the boundaries) in string format.

The AllowEscape property should be set to true in order to place the extended data length mode block. The extended data
length mode block may be placed only once in the barcode text. Also, it shall be placed at beginning of the barcode text.
The OnInvalidChar or OnInvalidDataChar event will occur if the extended data length mode block be placed more than
once, or it isn't placed at beginning of the barcode text. The following is an example of extended data length mode symbol:

\m[2,12]ABCDEFG1234567

The InitialMode property should be set to emAuto or emMode_Extended if an extended data length mode block is placed
in the barcode text, otherwise the OnInvalidChar or OnInvalidDataChar event will occur. Conversely, the extended data
length mode block is required if the InitialMode property is set to emMode_Extended, otherwise the OnInvalidChar or
OnInvalidDataChar event will occur too.

The extended data length mode block shouldn't be placed together with message append block in the barcode text,
otherwise the OnInvalidChar or OnInvalidDataChar event will occur. See also the "Message append (structured append)"
section below.

If a symbol is encoded in extended data length mode, the number of stacked rows will be changed to 16 automatically.

Note, if only two symbols are to be logically linked in extended data length mode, they may be arranged horizontally or
vertically adjacent to each other. If more symbols are to be logically linked, they shall be arranged in a single vertical stack.
The maximum number of symbols should be specified for the application.

Message append (structured append)

The message append is a method similar to the extended data length mode to encode data beyond the capacity of a
single Code 16K symbol. Up to 9 Code 16K symbols may be appended in a structured format to convey more data. It
should only be used in closed systems. If a symbol is part of a message append this shall be indicated by a message
append block in barcode text. The escape sequence "\s[<Index>, <Amount>]" is used to place the message append block
to the barcode text:

Index: The position index of the symbol within the set of Code 16K symbols in the message append format. It's an
integer between 1 and 9 (including the boundaries) in string format.

Amount: The total amount of the symbol within the set of Code 16K symbols in the message append format. It's an
integer between 2 and 9 (including the boundaries) in string format.

2D Barcode FMX Components User Manual

30

The AllowEscape property should be set to true in order to place the message append block. The message append block
may be placed only once in the barcode text. Also, it shall be placed at beginning of the barcode text. The OnInvalidChar
o r OnInvalidDataChar event will occur if the message append block be placed more than once or it isn't placed at
beginning of the barcode text. The following is an example of message append symbol:

\s[2,5]ABCDEFGHIJKLMN012345

The message block shouldn't be placed together with extended data length mode block in the barcode text, otherwise the
OnInvalidChar or OnInvalidDataChar event will occur. See also the "Extended data length mode" section above.

The message append block shouldn't be placed in the barcode text if the InitialMode property is set to
emMode_Extended, otherwise the OnInvalidChar or OnInvalidDataChar event will occur.

The symbols in a message append should not be arranged horizontally, but only in a single vertical stack.

2D Barcode FMX Components User Manual

31

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

MinRows

MaxRows

RowHeight

SeparatorBarHeight

InitialMode

AllowEscape

CurrentRows (Read only)

CurrentMode (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.4 TBarcodeFmx2D_CompactMatrix

The component is used to create the Compact Matrix 2D barcode symbols. It's defined in the pfmxCompactMatrix unit.

Compact Matrix is a variable-sized two-dimensional matrix symbology. The code graph adopts
sprocket hole positioning and graphic sectioning techniques to perform fast and accurate
identification and handling of 2D barcode graph by analyzing the information of sprocket position
and graphic section.

2D Barcode FMX Components User Manual

32

Compact Matrix can encode 7-bit ASCII, numeric, and binary data, in addition to any combination of data types in the
same symbol, particularly effective with Chinese characters.

Compact Matrix was invented by Syscan Technology Co., Ltd.

Symbol sizes

There are 32 vertical sizes of Compact Matrix symbol, referred to as version 1 to 32, in increasing order of symbol height
and data capacity. In horizontal orientation, each Compact Matrix symbol consists of an array of segments with a minimum
of 1 segment (maximum 32 segments).

You can use the MinVersion and the MaxVersion properties to specifiy the minimum and maximum version for a Compact
Matrix symbol. And use the MinSegments and the MaxSegments properties to specifiy the minimum and maximum
number of segments for it. In other words, the MinVersion and MinSegments properties specify a minimum symbol size,
and the MaxVersion and MaxSegments properties specify a maximum symbol size. According to the priority order
specified by the StretchOrder property, the first symbol size that accommodates the barcode text will be automatically
selected between the minimum symbol size and the maximum symbol size.

You can use the CurrentVersion property to get the factual version. And use the CurrentSegments property to get the
factual number of segments.

If the barcode text does not fill the maximum data capacity of the Compact Matrix symbol, remaining data capacity of the
symbol will be filled by using pad bits (the ECCLevelUpgrade property is set to false), or will be used to upgrade the error
correction code level (the ECCLevelUpgrade property is set to true). If the barcode text is so long that it cannot be
encoded using the maximum symbol size specified by the MaxVersion and the MaxSegments properties, an
OnInvalidLength or OnInvalidDataLength event will occur.

Error correction code (ECC)

There are eight user-selectable levels of error correction, from 1 to 8 respectively in increasing order of recovery capacity.

You can use the ECCLevel property to specify the error correction code level for a Compact Matrix symbol. It can be one
of values from 1 to 8, corresponding to the ECC levels from 1 to 8.

These ECC levels are listed in following table:

Error correction code level Percentage of total capacity for ECC data
1 8%
2 16%
3 24%
4 32%
5 40%
6 48%
7 56%
8 64%

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will be used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased, it may be determined depending on the
length of barcode text, and the error correction code level specified by the ECCLevel property (see also the "Symbol
sizes" section above). In other words, only the remaining capacity in current symbol size will be used to upgrade the error
correction code level. The property CurrentECCLevel can be used to get the factual error correction code level.

Quiet zones

2D Barcode FMX Components User Manual

33

The minimum quiet zone is equal to 6 modules on all four sides. So the minimum values of LeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 6.

Character set

All 7-bit ASCII values can be encoded.

8-bit binary data can be encoded.

GB 18030 Chinese characters can be encoded.

Five non-data characters can be encoded:

AIM FNC1: It identifies symbols formatted in accordance with specific industry or application specifications
previously agreed with AIM International. It is immediately followed by an application indicator assigned to
identify the specification concerned by AIM International. For this purpose, it shall only be used once in a
symbol and shall be placed at beginning of the barcode. The escape sequence "\0" can be used to placed
the FNC1 character to barcode text.

GS1 FNC1: It identifies symbols encoding data formatted according to the GS1 Application Identifiers
standard. For this purpose, it shall only be used once in a symbol and shall be placed at beginning of the
barcode text. The escape sequence "\1" can be used to placed the GS1 FNC1 character to barcode text.

FNC2: The FNC2 is used to implement structured append function in order to handle larger messages than
are practical in a single symbol. The escape sequence "\2[<File_Id>, <Amount>, <Index>]" is used to place
the FNC2 character and other structured append information (collectively referred to as structured append
block) to barcode text. See also the "Escape sequences" and "Structured append" sections below.

FNC3: The FNC3 is used to indicates that the symbol encodes a message used to program the reader
system. The escape sequence "\3" can be used to placed the FNC3 character to barcode text. See also the
"Escape sequences" section below.

ECI: ECI indicator blocks is for the standardized encoding of message interpretation information. The escape
sequence "\e[<ECI_Number>]" can be used to place the ECI indicator block to barcode text. See also the
"Extended Channel Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place these non-data characters.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert
them to the barcode text:

\\: Insert a backslash to barcode text.

\0: Insert an AIM FNC1 character to barcode text in order to encode AIM structural data similar to GS1. It shall be
placed at beginning of the barcode text and it shall not be used with GS1 FNC1 ("\1") or FNC3 ("\3"). If it is used
together with the structured append block (FNC2, "\2"), it shall be placed on front of the structured append block
("\2"). See also the "Structured append" section below.

\1: Insert a GS1 FNC1 character to barcode text in order to encode GS1 structural data. It shall be placed at
beginning of the barcode text and it shall not be used with AIM FNC1 ("\0") or FNC3 ("\3"). If it is used together with
the structured append block ("\2"), it shall be placed on front of the structured append block (FNC2, "\2"). See also
the "Structured append" section below.

\2[<File_Id>, <Amount>, <Index>]: Insert a structured append block (FNC2 and other structured append
information) to the barcode text in order to create the symbol in a structured append. See also the "Structured
append" section below.

2D Barcode FMX Components User Manual

34

\3: Insert a FNC3 character to barcode text, indicates that the symbol encodes a message used to program the
reader system. It shall be placed at beginning of the barcode text and it shall not be used with AIM FNC1 ("\0") or
GS1 FNC1 ("\1"). If it is used together with the structured append block (FNC2, "\2"), it shall be placed on front of the
structured append block (FNC2, "\2"). See also the "Structured append" section below.

\e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation
(ECI)" section below.

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that
of the default character set.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after
decoding. The ECI is identified by an integer (up to 6 digits) which is encoded in the Compact Matrix symbol by the ECI
indicator block. The escape sequence "\e[<ECI_Number>]" is used to place the ECI indicator block to the barcode text:

ECI_Number: The ECI number, it's an integer between 0 and 811799 (including the boundaries), the leading zero
is optional.

In a single symbol or structured append set of Compact Matrix symbols, if the AIM FNC1 ("\0"), GS1 FNC1 ("\1"), FNC2
(structured append block, "\2"), and FNC3 ("\3") are used, ECI indicator blocks may be placed anywhere behind of them,
otherwise, they may be placed anywhere in the barcode text. For example:

ABC\e[123]DEFabc\e[000003]def

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until
the end of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI may
straddle two or more symbols.

Structured append

In order to handle larger messages than are practical in a single symbol, a data message can be distributed across
several Compact Matrix symbols. Up to 16 Compact Matrix symbols may be appended in a structured format to convey
more data. If a symbol is part of a structured append this shall be indicated by a structured append block in barcode text.
The escape sequence "\2[<File_Id>, <Amount>, <Index>]" is used to place the structured append block to the barcode
text:

File_Id: The file identification. It's an integer between 0 and 255 (including the boundaries) in string format. The
purpose of the file identification is to increase the probability that only logically linked symbols are processed as part
of the same message.

Amount: The total amount of the symbol within the set of Compact Matrix symbols in the structured append format.
It's an integer between 1 and 16 (including the boundaries) in string format.

Index: The position index of the symbol within the set of Compact Matrix symbols in the structured append format.
It's an integer between 1 and 16 (including the boundaries) in string format.

The AllowEscape property should be set to true in order to place the structured append block. The structured append
block may only be placed once in the barcode text. If the structured append block is used together with AIM FNC1 ("\0"),
GS1 FNC1 ("\1") or FNC3 ("\3"), the AIM FNC1 ("\0"), GS1 FNC1 ("\1") or FNC3 ("\3") shall be placed at beginning of the
barcode text, then the structured append block. Otherwise, the structured append block shall be placed at beginning of the
barcode text. The OnInvalidChar or OnInvalidDataChar event will occur if the structured append block be placed more than
once, or it isn't placed at beginning of the barcode text or behind of the AIM FNC1 ("\0"), GS1 FNC1 ("\1") or FNC3 ("\3").
The following is examples of structured append:

\2[79, 5, 2]ABCDEFGabcdefg1234567890...

2D Barcode FMX Components User Manual

35

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

AllowEscape

MinVersion

MaxVersion

MinSegments

MaxSegments

StretchOrder

ECCLevel

ECCLevelUpgrade

StartWidth

StopWidth

Placement

CurrentVersion (Read only)

CurrentSegments (Read only)

CurrentECCLevel (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

\0\2[99, 6, 1]ASDFGHJKL098765...

2D Barcode FMX Components User Manual

36

4.1.5 TBarcodeFmx2D_DataMatrix

The component is used to create the Data Matrix (ECC 000 - 140) 2D barcode symbols. It's defined in the
pfmxDataMatrix unit.

Data Matrix code is a two-dimensional matrix barcode symbology consisting of black and white "cells" or modules
arranged in either a square or rectangular pattern. The information to be encoded can be text or raw data. Usual data size
is from a few bytes up to 2 kilobytes. The length of the encoded data depends on the symbol dimension used. Error
correction codes are added to increase symbol strength: even if they are partially damaged, they can still be read.

Data Matrix was invented by International Data Matrix, Inc. (ID Matrix) which was merged into RVSI/Acuity CiMatrix, who
was acquired by Siemens AG in October, 2005 and Microscan Systems in September 2008.

There are 2 types of Data Matrix symbology, namely ECC 000 - 140 and ECC 200. The component can be
used to generate the ECC 000 - 140 symbols. It is the conventional coding for error correction that was
used in the initial installations of Data Matrix systems. It offers five levels of error correction using
convolutional code error correction. ECC 000 - 140 symbols have an odd number of rows and an odd
number of columns. Symbols are square with sizes from 9 * 9 to 49 * 49 (modules) not including quiet
zones. These symbols can be recognized by the upper right corner module being dark.

ECC 000 - 140 should only be used in closed applications where a single party controls both the production and reading
of the symbols and is responsible for overall system performance.

If you want to generate the Data Matrix ECC 200 symbols, please use another component
TBarcodeFmx2D_DataMatrixECC200 in this components package.

Error correction code (ECC)

Data Matrix (ECC 000 - 140) symbols offer five levels of error correction, referred to as ECC 000, ECC 050, ECC 080,
ECC 100 and ECC 140 respectively in increasing order of recovery capacity. They are listed in following table:

Error correction code level Maximum % correctable damage % increase in used bits from ECC 000
ECC 000 none none
ECC 050 2.8 33
ECC 080 5.5 50
ECC 100 12.6 100
ECC 140 25 300

In an application, it is important to understand that these error correction levels result in the generation of a proportional
increase in the number of bits in the message (and hence increase in the size of the symbol), and offer different levels of
error recovery.

You can use the ECCLevel property to specify the error correction code level for a Data Matrix (ECC 000 - 140) symbol. It
can be one of these values: dmECC000, dmECC050, dmECC080, dmECC100, and dmECC140 (they are defined in the
pfmxDataMatrix unit), corresponding to the ECC levels ECC 000, ECC 050, ECC 080, ECC 100, and ECC 140.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will be used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased, it may be determined depending on the
length of barcode text, and the error correction code level specified by the ECCLevel property (see also the "Symbol
sizes" section below). In other words, only the remaining capacity in current symbol size will be used to upgrade the error
correction code level. The property CurrentECCLevel can be used to get the factual error correction code level.

2D Barcode FMX Components User Manual

37

Character set

All 8-bit values can be encoded. The default interpretation shall be:

For values 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII); Note this version consists
of the GO set of ISO/IEC 646 and the CO set of ISO/IEC 6429 with values 28 to 31 modified to FS, GS, RS and US
respectively).

For values 128 - 255, in accordance with ISO/IEC 8859-1 (These are referred to as extended ASCII).

Note, the character set isn't different based on the encoding mode. See also the "Encoding modes" section below.

Encoding modes

There are six encoding modes of Data Matrix (ECC 000 - 140) symbols, they are shown in following list, in decreasing
order of encoding density:

Numeric (Base 11): The encoding mode encodes 10 numeric characters 0 to 9, and the space character. The
encoding density is 3.5 bits per data character. The encoding mode has highest encoding density.

Alpha (Base 27): The encoding mode encodes 26 upper case letters A to Z, and the space character. The
encoding density is 4.8 bits per data character.

Alphanumeric (Base 37): The encoding mode encodes 26 upper case letters A to Z, 10 numeric characters 0 to 9,
and the space character. The encoding density is 5.25 bits per data character.

Punctuation (Base 41): The encoding mode encodes 26 upper case letters A to Z, 10 numeric characters 0 to 9,
and the space, point(.), hyphen(-), comma(,) and solidus(/) characters. The encoding density is 5.5 bits per data
character.

ASCII: The encoding mode encodes all 128 ASCII characters from ISO/IEC 646. The encoding density is 7 bits per
data character.

Binary: The encoding mode encodes all 256 8-bit bytes. It shall be used for closed applications, where the data
interpretation shall be determined by the user. The encoding density is 8 bits per byte. The encoding mode has
lowest encoding density.

You can use the EncodeMode property to specify the encoding mode for a Data Matrix (ECC 000 - 140) symbol. It can be
one of these value: emNumeric, emAlpha, emPunctuation, emAlphanumeric, emASCII, and emBinary, corresponding to
the encoding modes Numberic (Base 11), Alpha (Base 27), Alphanumeric (Base 37), Punctuation (Base 41), ASCII, and
Binary. Also, it can be set to emAuto, in this case, the encoding mode will be selected automatically from the list shown
above, depending on the barcode text, in other words, the barcode text to be encoded will be analysed, and an
appropriates lowest level (highest encoding density) encoding mode will be selected, in order to minimize the symbol size.
The property CurrentEncodeMode can be used to get the factual encoding mode. These property values are defined in the
pfmxDataMatrix unit.

Symbol sizes

ECC 000 - 140 symbols have an odd number of rows and an odd number of columns. Symbols are square with sizes from
9 * 9 to 49 * 49 (modules) square not including quiet zones. These symbol sizes (excluding quiet zones) and their
maximum data capacities are listed in following table:

2D Barcode FMX Components User Manual

38

Symbol size values Symbol sizes
(modules)

Maximum data capacities (bits)
ECC 000 ECC 050 ECC 080 ECC 100 ECC 140

dmSize_09_09 9 * 9 12 - - - -
dmSize_11_11 11 * 11 44 6 - - -
dmSize_13_13 13 * 13 84 36 18 7 -
dmSize_15_15 15 * 15 132 72 50 31 -
dmSize_17_17 17 * 17 188 114 86 59 9
dmSize_19_19 19 * 19 252 162 130 91 25
dmSize_21_21 21 * 21 324 216 178 127 43
dmSize_23_23 23 * 23 404 276 230 167 63
dmSize_25_25 25 * 25 492 342 290 211 85
dmSize_27_27 27 * 27 588 414 354 259 109
dmSize_29_29 29 * 29 692 492 422 311 135
dmSize_31_31 31 * 31 804 576 498 367 163
dmSize_33_33 33 * 33 924 666 578 427 193
dmSize_35_35 35 * 35 1052 762 662 491 225
dmSize_37_37 37 * 37 1188 864 754 559 259
dmSize_39_39 39 * 39 1332 972 850 631 295
dmSize_41_41 41 * 41 1484 1086 950 707 333
dmSize_43_43 43 * 43 1644 1206 1058 787 373
dmSize_45_45 45 * 45 1812 1332 1170 871 415
dmSize_47_47 47 * 47 1988 1464 1286 959 459
dmSize_49_49 49 * 49 2172 1602 1410 1051 505

The maximum number of characters in each encoding mode can be calculated by using the Maximum data capacities
(bits). For example, the maximum data capacities are 114 bits if the symbol size is 17 * 17 and the error correction code
level is ECC 050. The encoding density is 4.8 bits per data character in Alpha (Base 27) encoding mode, so the
maximum number of characters is 23 (114 / 4.8 = 23.75) in the Alpha (Base 27) encoding mode. You can find the
encoding density in "Encoding modes" section above.

You can use the MinSize and the MaxSize properties to specify the minimum and maximum sizes for a Data Matrix (ECC
000 - 140) symbol. They can be one of values from dmSize_09_09 to dmSize_49_49 (defined in the pfmxDataMatrix unit),
corresponding to every symbol size shown above. The smallest symbol size that accommodates the barcode text will be
automatically selected between minimum and maximum symbol sizes.

If the barcode text does not fill the maximum data capacity of the Data Matrix (ECC 000 - 140) symbol, remaining data
capacity of the symbol will be filled by using pad bits (the ECCLevelUpgrade property is set to false), or will be used to
upgrade the error correction code level (the ECCLevelUpgrade property is set to true). If the barcode text is so long that it
cannot be encoded using the maximum symbol size specified by the MaxSize property, an OnInvalidLength or
OnInvalidDataLength event will occur. The CurrentSize property can be used to get the factual symbol size.

Quiet zones

The minimum quiet zone is equal to 1 module on all four sides. So the minimum values of LeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 1. For applications with moderate to
excessive reflected noise in close proximity to the symbol, a quiet zone of 2 modules to 4 modules is recommended.

2D Barcode FMX Components User Manual

39

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

Inversed

MinSize

MaxSize

EncodeMode

ECCLevel

ECCLevelUpgrade

CurrentSize (Read only)

CurrentECCLevel (Read only)

CurrentEncodeMode (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.6 TBarcodeFmx2D_DataMatrixECC200

The component is used to create the Data Matrix (ECC 200) 2D barcode symbols. It's defined in the
pfmxDataMatrixEcc200 unit.

Data Matrix code is a two-dimensional matrix barcode symbology consisting of black and white "cells" or modules
arranged in either a square or rectangular pattern. The information to be encoded can be text or raw data. Usual data size
is from a few bytes up to 2 kilobytes. The length of the encoded data depends on the symbol dimension used. Error

2D Barcode FMX Components User Manual

40

correction codes are added to increase symbol strength: even if they are partially damaged, they can still be read.

Data Matrix was invented by International Data Matrix, Inc. (ID Matrix) which was merged into RVSI/Acuity CiMatrix, who
were acquired by Siemens AG in October, 2005 and Microscan Systems in September 2008.

There are 2 types of Data Matrix symbology, namely ECC 000 - 140 and ECC 200. The component can be
used to generate the ECC 000 - 140 symbols. It is the newest version of Data Matrix and supports
advanced encoding error checking and correction algorithms. It allows the routine reconstruction of the
entire encoded data string when the symbol has sustained 30% damage, assuming the matrix can still be
accurately located. So it's recommended for new application or open systems.

ECC 200 symbols have an even number of rows and an even number of columns. Some symbols are square with sizes
from 10 * 10 to 144 * 144 not including quiet zones. Some symbols are rectangular with sizes from 8 * 18 to 16 * 48 not
including quiet zones. All ECC 200 symbols can be recognised by the upper right corner module being light.

If you want to generate the Data Matrix ECC (000 - 140) symbols, please use another component
TBarcodeFmx2D_DataMatrix in this components package.

Shapes

There are two shapes of Data Matrix (ECC 200) symbols, square and rectangle, as described in following list:

Square: Indicates to generate the square symbols.

Rectangle: Indicates to generate the rectangle symbols.

You can use the Shape property to specify which shape of symbol will be selected to generate the barcode symbol. It can
be one of values dsSquare and dsRectangle, corresponding to the shapes square and rectangle. These values are
defined in the pfmxDataMatrixEcc200 unit.

Symbol sizes

Data Matrix (ECC 200) symbols have an even number of rows and an even number of columns. The sizes of the square
symbols are from 10 * 10 to 144 * 144 (modules) not including quiet zones. The sizes of the rectangle symbols are from 8 *
18 to 16 * 48 (modules) not including quiet zone.

The sizes of square symbols (excluding quiet zones) and their maximum data capacities are listed in following table:

2D Barcode FMX Components User Manual

41

Symbol size values Symbol sizes
(modules)

Maximum data capacities

Numeric Alphanumeric Byte

dmSize_10_10 10 * 10 6 3 1

dmSize_12_12 12 * 12 10 6 3

dmSize_14_14 14 * 14 16 10 6

dmSize_16_16 16 * 16 24 16 10

dmSize_18_18 18 * 18 36 25 16

dmSize_20_20 20 * 20 44 31 20

dmSize_22_22 22 * 22 60 43 28

dmSize_24_24 24 * 24 72 52 34

dmSize_26_26 26 * 26 88 64 42

dmSize_32_32 32 * 32 124 91 60

dmSize_36_36 36 * 36 172 127 84

dmSize_40_40 40 * 40 228 169 112

dmSize_44_44 44 * 44 288 214 142

dmSize_48_48 48 * 48 348 259 172

dmSize_52_52 52 * 52 408 304 202

dmSize_64_64 64 * 64 560 418 277

dmSize_72_72 72 * 72 736 550 365

dmSize_80_80 80 * 80 912 682 453

dmSize_88_88 88 * 88 1152 862 573

dmSize_96_96 96 * 96 1392 1042 693

dmSize_104_104 104 * 104 1632 1222 813

dmSize_120_120 120 * 120 2100 1573 1047

dmSize_132_132 132 * 132 2608 1954 1301

dmSize_144_144 144 * 144 3116 2335 1555

The sizes of rectangle symbols (excluding quiet zones) and their maximum data capacities are listed in following
table:

Symbol size values Symbol sizes
(modules)

Maximum data capacities

Numeric Alphanumeric Byte

dmSize_8_18 8 * 18 10 6 3

dmSize_8_32 8 * 32 20 13 8

dmSize_12_26 12 * 26 32 22 14

dmSize_12_36 12 * 36 44 31 20

dmSize_16_36 16 * 36 64 46 30

dmSize_16_48 16 * 48 98 72 47

You can use the MinSize and the MaxSize properties to specifiy the minimum and maximum sizes for a Data Matrix (ECC
200) symbol. They can be one of values from dmSize_10_10 to dmSize_16_48 (they are defined in the

2D Barcode FMX Components User Manual

42

pfmxDataMatrixEcc200 unit), corresponding to every symbol size shown above. The smallest symbol size that
accommodates the barcode text will be automatically selected between minimum and maximum symbol sizes.

If the barcode text does not fill the maximum data capacity of the Data Matrix (ECC 200) symbol, remaining data capacity
of the symbol will be filled by using PAD characters. If the barcode text is so long that it cannot be encoded using the
maximum symbol size specified by the MaxSize property, an OnInvalidLength or OnInvalidDataLength event will occur. The
CurrentSize property can be used to get the factual symbol size.

Quiet zones

The minimum quiet zone is equal to 1 module on all four sides. So the minimum values of LeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 1. For applications with moderate to
excessive reflected noise in close proximity to the symbol, a quiet zone of 2 modules to 4 modules is recommended.

Error checking and correcting (ECC)

Data Matrix (ECC 200) symbols are fixed at a repair level of about 25% damage and overhead ranges from 60% for a
small number of characters downward to 26% for a large number of characters encoded.

Character set

All 8-bit values can be encoded. The default interpretation shall be:

For values 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII); Note this version
consists of the GO set of ISO/IEC 646 and the CO set of ISO/IEC 6429 with values 28 to 31 modified to FS,
GS, RS and US respectively).

For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).

This interpretation corresponds to ECI 000003.

Two non-data characters can be encoded, FNC1 for compatibility with some existing applications and ECI indicator
blocks for the standardized encoding of message interpretation information.

FNC1: The FNC1 character following an application standard agreed with AIM International, identifies a
symbol which conforms to a specific industry standard. FNC1 shall be used as defined in the EAN.UCC
General Specifications in the first position. The FNC1 character may also be used as a field separator, in
which case it will be represented in the transmitted message as GS character (ASCII value 29). The escape
sequence "\f" can be used to placed the FNC1 character to barcode text.

ECI: The escape sequence "\e[<ECI_Number>]" can be used to place the ECI indicator block to barcode
text. See also the "Extended Channel Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place the FNC1 characters or the ECI indicator blocks.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert
them to the barcode text:

\\: Insert a backslash to barcode text.

\5: Insert a 05 macro to barcode text. It's used to abbreviate the industry specific header "[)>{RS}05{GS}" and trailer
"{RS}{EOT}", in order to reduce the size of symbol. It must be placed at beginning of the barcode text and it shall not
be used in conjunction with structured append.

\6: Insert a 06 macro to barcode text. It's used to abbreviate the industry specific header "[)>{RS}06{GS}" and trailer
"{RS}{EOT}", in order to reduce the size of symbol. It must be placed at beginning of the barcode text and it shall not
be used in conjunction with structured append.

2D Barcode FMX Components User Manual

43

\f: Insert a FNC1 character to barcode text. See also the "Character set" section above.

\e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation
(ECI)" section below.

\s[<Index>, <Amount>, <File_Id>]: Insert a structured append block to the barcode text in order to create the
symbol in a structured append. See also the "Structured append" section below.

\r: Indicates that the symbol encodes a message used to program the reader system. It shall be placed at beginning
of the barcode text and it shall not be used with structured append.

Note, the "{RS}" is ASCII character RS (ASCII value 30), the "{GS}" is ASCII character GS (ASCII value 29), and the
"{EOT}" is ASCII character EOT (ASCII value 4).

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that
of the default character set. Four broad types of interpretations are supported in Data Matrix (ECC 200):

International character sets (or code pages).

General purpose interpretations such as encryption and compaction.

User defined interpretations for closed systems.

Control information for structured append in unbuffered mode.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after
decoding. The ECI is identified by an integer (up to 6 digits) which is encoded in the Data Matrix (ECC 200) symbol by the
ECI indicator block. The escape sequence "\e[<ECI_Number>]" is used to place the ECI indicator block to the barcode
text:

ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero
is optional.

ECI indicator blocks may be placed anywhere in the barcode text in a single or structured append set of Data Matrix (ECC
200) symbols. For example:

ABC\e[123]DEFabc\e[000003]def

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until
the end of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI may
straddle two or more symbols.

Structured append

In order to handle larger messages than are practical in a single symbol, a data message can be distributed across
several Data Matrix (ECC 200) symbols. Up to 16 Data Matrix (ECC 200) symbols may be appended in a structured
format to convey more data. If a symbol is part of a structured append this shall be indicated by a structured append block
in barcode text. The escape sequence "\s[<Index>, <Amount>, <File_Id>]" is used to place the structured append block to
the barcode text:

Index: The position index of the symbol within the set of Data Matrix (ECC 200) symbols in the structured append
format. It's an integer between 1 and 16 (including the boundaries) in string format.

Amount: The total amount of the symbol within the set of Data Matrix (ECC 200) symbols in the structured append
format. It's an integer between 2 and 16 (including the boundaries) in string format.

File_Id: The file identification. It's an integer between 1 and 64516 (including the boundaries) in string format. The
purpose of the file identification is to increase the probability that only logically linked symbols are processed as part

2D Barcode FMX Components User Manual

44

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

Inversed

MinSize

MaxSize

Shape

CurrentSize (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

of the same message. Also the field can be expressed as two integers between 1 and 254 (including the
boundaries), separated with a comma.

The AllowEscape property should be set to true in order to place the structured append block. The structured append
block may only be placed once in the barcode text. Also, it shall be placed at beginning of the barcode text. The
OnInvalidChar or OnInvalidDataChar event will occur if the structured append block be placed more than once, or it isn't
placed at beginning of the barcode text. The following is the examples of structured append:

\s[2, 5, 25431]ABCDEFGabcdefg1234567890
\s[2, 5, 101, 31]ABCDEFGabcdefg1234567890

4.1.7 TBarcodeFmx2D_GridMatrix

2D Barcode FMX Components User Manual

45

The component is used to create the Grid Matrix 2D barcode symbols. It's defined in the pfmxGridMatrix unit.

Grid Matrix is a square, variable-sized, two-dimensional matrix symbology with unique dark- and light-
framed "macromodules" that create a grid design that provides a robust finder pattern. The unique finder
pattern ensures that readers can locate and orient the symbol even with significant symbol damage.

Grid Matrix can encode 7-bit ASCII, numeric, and binary data, in addition to any combination of data types in
the same symbol, particularly effective with Chinese characters.

Grid Matrix was invented by Syscan Technology Co., Ltd.

Symbol sizes

There are thirteen sizes of Grid Matrix symbol, referred to as version 1 to 13, in increasing order of size and data capacity.
You can use the MinVersion and the MaxVersion properties to specifiy the minimum and maximum sizes for a Grid Matrix
symbol. They can be one of values from 1 to 13 (defined in the pfmxGridMatrix unit), corresponding to the versions 1 to 13.
The smallest symbol size that accommodates the barcode text will be automatically selected between minimum and
maximum symbol sizes. The CurrentVersion property can be used to get the factual symbol size.

The symbol sizes and the maximum data capacity of each version are listed in following table:

Version Symbol sizes
(modules)

Maximum data capacities (bits)
ECC Level 1 ECC Level 2 ECC Level 3 ECC Level 4 ECC Level 5

1 18 * 18 - 105 91 77 63
2 30 * 30 315 280 245 210 175
3 42 * 42 623 553 483 413 343
4 54 * 54 1022 910 798 686 567
5 66 * 66 1526 1358 1190 1022 847
6 78 * 78 2135 1897 1659 1421 1183
7 90 * 90 2835 2520 2205 1890 1575
8 102 * 102 3647 3241 2835 2429 2023
9 114 * 114 4550 4046 3542 3038 2527

10 126 * 126 5558 4942 4326 3710 3087
11 138 * 138 6671 5929 5187 4445 3703
12 150 * 150 7875 7000 6125 5250 4375
13 162 * 162 9191 8169 7147 6125 5103

If the barcode text does not fill the maximum data capacity of the Grid Matrix symbol, remaining data capacity of the
symbol will be filled by using pad bits (the ECCLevelUpgrade property is set to false), or will be used to upgrade the error
correction code level (the ECCLevelUpgrade property is set to true). If the barcode text is so long that it cannot be
encoded using the maximum symbol size specified by the MaxVersion property, an OnInvalidLength or
OnInvalidDataLength event will occur.

Error correction code (ECC)

There are five user-selectable levels of error correction, from 1 to 5 respectively in increasing order of recovery capacity.

You can use the ECCLevel property to specify the error correction code level for a Grid Matrix symbol. It can be one of
these values: elLevel_1, elLevel_2, elLevel_3, elLevel_4, and elLevel_5 (they are defined in the pfmxGridMatrix unit),
corresponding to the ECC levels from 1 to 5.

These ECC levels are listed in following table:

2D Barcode FMX Components User Manual

46

Value of ECCLevel property Error correction code level Percentage of total capacity for ECC data
elLevel_1 1 10%
elLevel_2 2 20%
elLevel_3 3 30%
elLevel_4 4 40%
elLevel_5 5 50%

Note, the ECC level 1 is inapplicable to the version 1.

Also, you can set the ECCLevel property to elLevel_Recommend or elLevel_LowestRecommend. For each symbol
version, the denotative ECC levels are listed in following table:

Version
Denotative ECC level

ECCLevel = elLevel_Recommend ECCLevel = elLevel_LowestRecommend
1 5 4
2 4 2
3 4 1

4-13 3 1

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will be used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased, it may be determined depending on the
length of barcode text, and the error correction code level specified by the ECCLevel property (see also the "Symbol
sizes" section above). In other words, only the remaining capacity in current symbol size will be used to upgrade the error
correction code level. The property CurrentECCLevel can be used to get the factual error correction code level.

Quiet zones

The minimum quiet zone is equal to 6 modules on all four sides. So the minimum values of LeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 6.

Character set

All 7-bit ASCII values can be encoded.

8-bit binary data can be encoded.

GB 18030 Chinese characters can be encoded.

Five non-data characters can be encoded:

AIM FNC1: It identifies symbols formatted in accordance with specific industry or application specifications
previously agreed with AIM International. It is immediately followed by an application indicator assigned to
identify the specification concerned by AIM International. For this purpose, it shall only be used once in a
symbol and shall be placed at beginning of the barcode. The escape sequence "\0" can be used to placed
the FNC1 character to barcode text.

GS1 FNC1: It identifies symbols encoding data formatted according to the GS1 Application Identifiers
standard. For this purpose, it shall only be used once in a symbol and shall be placed at beginning of the
barcode text. The escape sequence "\1" can be used to placed the GS1 FNC1 character to barcode text.

FNC2: The FNC2 is used to implement structured append function in order to handle larger messages than
are practical in a single symbol. The escape sequence "\2[<File_Id>, <Amount>, <Index>]" is used to place
the FNC2 character and other structured append information (collectively referred to as structured append
block) to barcode text. See also the "Escape sequences" and "Structured append" sections below.

2D Barcode FMX Components User Manual

47

FNC3: The FNC3 is used to indicates that the symbol encodes a message used to program the reader
system. The escape sequence "\3" can be used to placed the FNC3 character to barcode text. See also the
"Escape sequences" section below.

ECI: ECI indicator blocks is for the standardized encoding of message interpretation information. The escape
sequence "\e[<ECI_Number>]" can be used to place the ECI indicator block to barcode text. See also the
"Extended Channel Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place these non-data characters.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert
them to the barcode text:

\\: Insert a backslash to barcode text.

\0: Insert an AIM FNC1 character to barcode text in order to encode AIM structural data similar to GS1. It shall be
placed at beginning of the barcode text and it shall not be used with GS1 FNC1 ("\1") or FNC3 ("\3"). If it is used
together with the structured append block (FNC2, "\2"), it shall be placed on front of the structured append block
("\2"). See also the "Structured append" section below.

\1: Insert a GS1 FNC1 character to barcode text in order to encode GS1 structural data. It shall be placed at
beginning of the barcode text and it shall not be used with AIM FNC1 ("\0") or FNC3 ("\3"). If it is used together with
the structured append block ("\2"), it shall be placed on front of the structured append block (FNC2, "\2"). See also
the "Structured append" section below.

\2[<File_Id>, <Amount>, <Index>]: Insert a structured append block (FNC2 and other structured append
information) to the barcode text in order to create the symbol in a structured append. See also the "Structured
append" section below.

\3: Insert a FNC3 character to barcode text, indicates that the symbol encodes a message used to program the
reader system. It shall be placed at beginning of the barcode text and it shall not be used with AIM FNC1 ("\0") or
GS1 FNC1 ("\1"). If it is used together with the structured append block (FNC2, "\2"), it shall be placed on front of the
structured append block (FNC2, "\2"). See also the "Structured append" section below.

\e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation
(ECI)" section below.

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that
of the default character set.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after
decoding. The ECI is identified by an integer (up to 6 digits) which is encoded in the Grid Matrix symbol by the ECI
indicator block. The escape sequence "\e[<ECI_Number>]" is used to place the ECI indicator block to the barcode text:

ECI_Number: The ECI number, it's an integer between 0 and 811799 (including the boundaries), the leading zero
is optional.

In a single symbol or structured append set of Grid Matrix symbols, if the AIM FNC1 ("\0"), GS1 FNC1 ("\1"), FNC2
(structured append block, "\2"), and FNC3 ("\3") are used, ECI indicator blocks may be placed anywhere behind of them,
otherwise, they may be placed anywhere in the barcode text. For example:

ABC\e[123]DEFabc\e[000003]def

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until

2D Barcode FMX Components User Manual

48

the end of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI may
straddle two or more symbols.

Structured append

In order to handle larger messages than are practical in a single symbol, a data message can be distributed across
several Grid Matrix symbols. Up to 16 Grid Matrix symbols may be appended in a structured format to convey more data. If
a symbol is part of a structured append this shall be indicated by a structured append block in barcode text. The escape
sequence "\2[<File_Id>, <Amount>, <Index>]" is used to place the structured append block to the barcode text:

File_Id: The file identification. It's an integer between 0 and 255 (including the boundaries) in string format. The
purpose of the file identification is to increase the probability that only logically linked symbols are processed as part
of the same message.

Amount: The total amount of the symbol within the set of Grid Matrix symbols in the structured append format. It's an
integer between 1 and 16 (including the boundaries) in string format.

Index: The position index of the symbol within the set of Grid Matrix symbols in the structured append format. It's an
integer between 1 and 16 (including the boundaries) in string format.

The AllowEscape property should be set to true in order to place the structured append block. The structured append
block may only be placed once in the barcode text. If the structured append block is used together with AIM FNC1 ("\0"),
GS1 FNC1 ("\1") or FNC3 ("\3"), the AIM FNC1 ("\0"), GS1 FNC1 ("\1") or FNC3 ("\3") shall be placed at beginning of the
barcode text, then the structured append block. Otherwise, the structured append block shall be placed at beginning of the
barcode text. The OnInvalidChar or OnInvalidDataChar event will occur if the structured append block be placed more than
once, or it isn't placed at beginning of the barcode text or behind of the AIM FNC1 ("\0"), GS1 FNC1 ("\1") or FNC3 ("\3").
The following is examples of structured append:

\2[79, 5, 2]ABCDEFGabcdefg1234567890...
\0\2[99, 6, 1]ASDFGHJKL098765...

2D Barcode FMX Components User Manual

49

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

AllowEscape

MinVersion

MaxVersion

ECCLevel

ECCLevelUpgrade

CurrentVersion (Read only)

CurrentECCLevel (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.8 TBarcodeFmx2D_HanXinCode

The component is used to create the Han Xin Code 2D barcode symbols. It's defined in the pfmxHanXinCode unit.

Han Xin Code is also known as Chinese Sensible Code, It is a unique, variable size, matrix symbology
specifically optimized for two and four byte alphabets such as Chinese and other
ideographic/pictographic alphabets. It is equally suitable for single byte ISO Code Pages such as
English.

Han Xin Code also includes an option for octet byte encoding for applications such as graphics and audio. Extended
Channel Interpretation (ECIs) support is also included. It incorporates strong Reed-Solomon error correction to enable four

2D Barcode FMX Components User Manual

50

levels of error correction abilities to recover information from damaged symbols.

Symbol sizes

There are eighty-four sizes of Han Xin Code symbols, referred to as version 1 to 84, in increasing order of size and data
capacity. You can use the MinVersion and the MaxVersion properties to specifiy the minimum and maximum sizes for a
Han Xin Code symbol. They can be one of values from 1 to 84 (defined in the pfmxHanXin unit), corresponding to the
versions 1 to 84. The smallest symbol size that accommodates the barcode text will be automatically selected between
minimum and maximum symbol sizes. The CurrentVersion property can be used to get the factual symbol size.

If the barcode text does not fill the maximum data capacity of the Han Xin Code symbol, remaining data capacity of the
symbol will be filled by using pad bits (the ECCLevelUpgrade property is set to false), or will be used to upgrade the error
correction code level (the ECCLevelUpgrade property is set to true). If the barcode text is so long that it cannot be
encoded using the maximum symbol size specified by the MaxVersion property, an OnInvalidLength or
OnInvalidDataLength event will occur.

Error correction code (ECC)

There are four user-selectable levels of error correction, from L1 to L4 respectively in increasing order of recovery
capacity.

You can use the ECCLevel property to specify the error correction code level for a Han Xin Code symbol. It can be one of
these values: elLevel_1, elLevel_2, elLevel_3, and elLevel_4 (they are defined in the pfmxHanXinCode unit),
corresponding to the ECC levels from L1 to L4.

These ECC levels are listed in following table:

Value of ECCLevel property Error correction code level Recevory capacities (%) (approx.)
elLevel_1 L1 8%
elLevel_2 L2 15%
elLevel_3 L3 23%
elLevel_4 L4 30%

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will be used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased, it may be determined depending on the
length of barcode text, and the error correction code level specified by the ECCLevel property (see also the "Symbol
sizes" section above). In other words, only the remaining capacity in current symbol size will be used to upgrade the error
correction code level. The property CurrentECCLevel can be used to get the factual error correction code level.

Quiet zones

The minimum quiet zone is equal to 3 modules on all four sides. So the minimum values of LeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 3.

Character set

All 7-bit ASCII values can be encoded.

8-bit binary data can be encoded.

GB 18030 Chinese characters can be encoded.

One non-data characters can be encoded:

ECI: ECI indicator blocks is for the standardized encoding of message interpretation information. The escape

2D Barcode FMX Components User Manual

51

sequence "\e[<ECI_Number>]" can be used to place the ECI indicator block to barcode text. See also the
"Extended Channel Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place non-data characters.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert
them to the barcode text:

\\: Insert a backslash to barcode text.

\e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation
(ECI)" section below.

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that
of the default character set.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after
decoding. The ECI is identified by an integer (up to 6 digits) which is encoded in the Han Xin Code symbol by the ECI
indicator block. The escape sequence "\e[<ECI_Number>]" is used to place the ECI indicator block to the barcode text:

ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero
is optional.

In a Han Xin Code symbol, the ECI indicator blocks may be placed anywhere in the barcode text. For example:

ABC\e[123]DEFabc\e[000003]def

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until
the end of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI may
straddle two or more symbols.

2D Barcode FMX Components User Manual

52

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

AllowEscape

MinVersion

MaxVersion

ECCLevel

ECCLevelUpgrade

ReviseVersion5

CurrentVersion (Read only)

CurrentECCLevel (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.9 TBarcodeFmx2D_MaxiCode

The component is used to create the MaxiCode 2D Barcode symbols. It's defined in the pfmxMaxiCode unit.

2D Barcode FMX Components User Manual

53

MaxiCode is a public domain, machine-readable symbol system originally created and used by
United Parcel Service in 1992. It was designed for tracking and managing the shipment of
packages, and can be quickly automatically scanned on high-speed conveyor lines.

MaxiCode is a fixed-size symbology. A MaxiCode symbol appears as a 1.11 * 1.054 inchs
square, with a bullseye in the middle, surrounded by a pattern of hexagonal dots (modules). Each
hexagonal dot (module) measures 0.035 * 0.041 inches.

Modes

MaxiCode has modes which are used to define the format of the message and the level of error correction within a
symbol:

Mode 2: It encodes a structured carrier message with a numeric postal code, and an optional secondary message.
A numeric postal code, a country code, and a class of service code assigned by the carrier are included in the
structured carrier message.

The symbol employs enhanced error correction for the structured carrier message and standard error correction for
the secondary message, see also the "Error checking and correcting (ECC)" section below.

It is designed for use in the transport industry. Primary use is US domestic destinations.

The formats of mode 2 barcode text are specified in the following list:

[)>{RS}01{GS}YYPPPPPPPPP{GS}CCC{GS}SSS{GS}MESSAGE{RS}{EOT}

YY: Date (year), 2 digits.

PPPPPPPPP: Numeric postal code, up to 9 digits. Only first 9 digits will be encoded if its length is
greater than 9 digits.

CCC: Country code, 3 digits.

SSS: Serivce class, 3 digits

MESSAGE: Optional secondary message. All 256 of the ASCII characters can be used. A maximum of
about 71 alphanumeric characters or about 107 digits can be encoded in the message.

{RS}: ASCII character RS (ASCII value 30). The RS character after the secondary message is optional.
If the AllowEscape property is set to true, you can use the "\r" instead of the RS character.

{GS}: ASCII character GS (ASCII value 29). It's used to delimit each field in barcode text. The GS
character after the service class can be omitted if secondary message doesn't exist. If the AllowEscape
property is set to true, you can use the "\g" instead of the GS character.

{EOT}: Optional ASCII character EOT (ASCII value 4). If the AllowEscape property is set to true, you
can use the "\t" instead of the EOT character.

For example (Date: 96; Postal code: 123456789; Country code: 840; Service class: 001; Secondary
message: 'PA USA' + Chr(29) + 'UPS\123'):

'[)>' + Chr(30) + '01' + Chr(29) + '96123456789' + Chr(29) + '840' +
Chr(29) + '001' + Chr(29) + 'PA USA' + Chr(29) + 'UPS\123' +
Chr(30) + Chr(4)

'[)>\r01\g96123456789\g840\g001\gPA USA\gUPS\\123\r\t'

PPPPPPPPP{GS}CCC{GS}SSS{GS}MESSAGE{EOT}

PPPPPPPPP: Numeric postal code, up to 9 digits. Only first 9 digits will be encoded if its length is

2D Barcode FMX Components User Manual

54

greater than 9 digits.

CCC: Country code, 3 digits.

SSS: Serivce class, 3 digits

MESSAGE: Optional secondary message. All 256 of the ASCII characters can be used. A maximum of
about 82 alphanumeric characters or about 121 digits can be encoded in the message.

{GS}: ASCII character GS (ASCII value 29). It's used to delimit each field in barcode text. The GS
character after the service class can be omitted if secondary message doesn't exist. If the AllowEscape
property is set to true, you can use the "\g" instead of the GS character.

{EOT}: Optional ASCII character EOT (ASCII value 4). If the AllowEscape property is set to true, you
can use the "\t" instead of the EOT character.

For example (Postal code: 123456789; Country code: 840; Service class: 001; Secondary message: 'PA
USA' + Chr(29) + 'UPS\123'):

'123456789' + Chr(29) + '840' + Chr(29) + '001' + Chr(29) + 'PA USA'
+ Chr(29) + 'UPS\123' + Chr(4)

'123456789\g840\g001\gPA USA\gUPS\\123\t'

Mode 3: It encodes a structured carrier message with an alphanumeric postal code, and an optional secondary
message. An alphanumeric postal code, a country code, and a class of service code assigned by the carrier are
included in the structured carrier message.

The symbol employs enhanced error correction for the structured carrier message and standard error correction for
the secondary message, see also the "Error checking and correcting (ECC)" section below.

It is designed for use in the transport industry. Primary use is international destinations.

The mode 3 is similar to mode 2, but the postal code field encodes 6 alphanumeric characters.

The formats of mode 3 barcode text are specified in the following list:

[)>{RS}01{GS}YYPPPPPP{GS}CCC{GS}SSS{GS}MESSAGE{RS}{EOT}

YY: Date (year), 2 digits.

PPPPPP: Alphanumeric postal code, up to 6 alphanumeric characters. Only first 6 characters will be
encoded if its length is greater than 6 characters. All upper case letters, all numeric characters, space
character, and the punctuations and symbols corresponding to the ASCII values from 34 to 58 can be
encoded.

CCC: Country code, 3 digits.

SSS: Serivce class, 3 digits

MESSAGE: Optional secondary message. All 256 of the ASCII characters can be used. A maximum of
about 71 alphanumeric characters or about 107 digits can be encoded in the message.

{RS}: ASCII character RS (ASCII value 30). The RS character after the secondary message is optional.
If the AllowEscape property is set to true, you can use the "\r" instead of the RS character.

{GS}: ASCII character GS (ASCII value 29). It's used to delimit each field in barcode text. The GS
character after the service class can be omitted if secondary message doesn't exist. If the AllowEscape
property is set to true, you can use the "\g" instead of the GS character.

{EOT}: Optional ASCII character EOT (ASCII value 4). If the AllowEscape property is set to true, you
can use the "\t" instead of the EOT character.

2D Barcode FMX Components User Manual

55

For example (Date: 96; Postal code: ABC12; Country code: 840; Service class: 001; Secondary message:
'PA USA' + Chr(29) + 'UPS\123'):

'[)>' + Chr(30) + '01' + Chr(29) + '96ABC12' + Chr(29) + '840' +
Chr(29) + '001' + Chr(29) + 'PA USA' + Chr(29) + 'UPS\123' +
Chr(30) + Chr(4)

'[)>\r01\g96ABC12\g840\g001\gPA USA\gUPS\\123\r\t'

PPPPPP{GS}CCC{GS}SSS{GS}MESSAGE{EOT}

PPPPPP: Alphanumeric postal code, up to 6 alphanumeric characters. Only first 6 characters will be
encoded if its length is greater than 6 characters. All upper case letters, all numeric characters, space
character, and the punctuations and symbols corresponding to the ASCII values from 34 to 58 can be
encoded.

CCC: Country code, 3 digits.

SSS: Serivce class, 3 digits

MESSAGE: Optional secondary message. All 256 of the ASCII characters can be used. A maximum of
about 82 alphanumeric characters or about 121 digits can be encoded in the message.

{GS}: ASCII character GS (ASCII value 29). It's used to delimit each field in barcode text. The GS
character after the service class can be omitted if secondary message doesn't exist. If the AllowEscape
property is set to true, you can use the "\g" instead of the GS character.

{EOT}: Optional ASCII character EOT (ASCII value 4). If the AllowEscape property is set to true, you
can use the "\t" instead of the EOT character.

For example (Postal code: ABC12; Country code: 840; Service class: 001; Secondary message: 'PA USA' +
Chr(29) + 'UPS\123'):

'ABC12' + Chr(29) + '840' + Chr(29) + '001' + Chr(29) + 'PA USA' +
Chr(29) + 'UPS\123' + Chr(4)

'ABC12\g840\g001\gPA USA\gUPS\\123\t'
Mode 4:

Indicates that the symbol encodes an unformatted message. The barcode message is divided into a primary
message and a secondary message internally, the symbol employs enhanced error correction for the primary
message and standard error correction for the secondary message.

All 256 of the ASCII characters can be used. A maximum of about 93 alphanumeric characters or about 138 digits
can be encoded in the symbol.

Mode 5:

Indicates that the symbol encodes an unformatted message. The barcode message is divided into a primary
message and a secondary message internally, the symbol employs enhanced error correction for both the primary
and secondary messages.

All 256 of the ASCII characters can be used. A maximum of about 77 alphanumeric characters or about 113 digits
can be encoded in the symbol.

The mode 5 is similar to mode 4, but it employs enhanced error correction for secondary messages.

Mode 6:

2D Barcode FMX Components User Manual

56

Indicates that the symbol encodes a message used to program the reader system. The barcode message is
divided into a primary message and a secondary message internally, the symbol employs enhanced error
correction for the primary message and standard error correction for the secondary message.

All 256 of the ASCII characters can be used. A maximum of about 93 alphanumeric characters or about 138 digits
can be encoded in the symbol.

You can use the Mode property to specify the factual mode for a MaxiCode symbol. It can be one of values from 2 to 6,
corresponding to the modes from 2 to 6. They are defined in the pfmxMaxiCode unit.

Also, you can set the AutoMode property to true, in order to automatically select the suitable mode depending on the
barcode text and the value of Mode property. And use the CurrentMode property to get the factual mode:

If the Mode property is set to mode 2 or 3, the factual mode will be selected between mode 2 and 3, depending on
the postal code field in the barcode text.

If the Mode property is set to mode 4, the factual mode will be selected between mode 4 and 5, depending on the
length of barcode text. If the length of barcode text is so short that can be encoded by using mode 5, the mode 5 will
be used in order to employ enhanced error correction, otherwise the mode 4 will be used in order to accommodate
more barcode text.

If the Mode property is set to mode 5, the mode 5 will be selected always, in order to insure high level of enhanced
error correction.

If the Mode property is set to mode 6, the mode 6 will be selected always, in order to encodes a message used to
program the reader system.

Symbol size

Each MaxiCode symbol is of a fixed size, having 884 hexagonal modules arranged in 33 rows around a central finder
pattern. Each row consists of a maximum of 30 modules.

Also, each symbol, including the quiet zones, is of a fixed physical size, nominally 28.14mm wide, 26.91mm high. Each
hexagonal dot (module) measures 0.889 * 1.041 millimeters.

Quiet zones

The MaxiCode symbology require the minimum 1 module quiet zones as measured from the outside edges. So the
minimum values of LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 1.

Error checking and correcting (ECC)

MaxiCode symbology offer two levels of error checking and correction, Enhanced Error Correction (EEC) and Standard
Error Correction (SEC), which are specified by the Mode, see also the "Modes" section above.

In mode 2 and 3, the symbol employs EEC for the structured carrier message and SEC for the secondary message. In
mode 4, 5, and 6, MaxiCode symbols are internally divided into a primary message and a secondary message, the mode
4 and 6 symbol employ EEC for the primary message and SEC for the secondary message. the mode 5 symbol employs
EEC for both the primary and secondary messages.

Character set

In mode 2, all numeric characters can be encoded in the country code, service class, and postal code fields. All 256 of the
ASCII characters can be encoded in the secondary message.

In mode 3, all numeric characters can be encoded in the country code and service class fields, all upper case letters, all
numeric characters, space character, and punctuations and symbols corresponding to the ASCII values from 34 to 58 can
be encoded in the postal code field. All 256 of the ASCII characters can be encoded in the secondary message.

2D Barcode FMX Components User Manual

57

In mode 4, 5 and 6, All 256 of the ASCII characters can be encoded in the entire message.

The default interpretation of these characters shall be:

Values 0-127, in accordance with ANSI X3.4, i.e. all 128 ASCII characters

values 128-255 in accordance with ISO 8859-1: Latin Alphabet No. 1, i.e. extended ASCII characters.

This default interpretation corresponds to ECI 000003.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert
them to the barcode text:

\\: Insert a backslash to barcode text.

\f: Insert a FS character (ASCII value 28) to barcode text. See also the "Modes" section above.

\g: Insert a GS character (ASCII value 29) to barcode text. See also the "Modes" section above.

\r: Insert a RS character (ASCII value 30) to barcode text. See also the "Modes" section above.

\t: Insert a EOT character (ASCII value 4) to barcode text. See also the "Modes" section above.

\e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation
(ECI)" section below.

\s[<Index>, <Amount>]: Insert a structured append block to barcode text in order to create the symbol in a
structured append. See also the "Structured append" section below.

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that
of the default character set. Four broad types of interpretations are supported in MaxiCode:

International character sets (or code pages).

General purpose interpretations such as encryption and compaction.

User defined interpretations for closed systems.

Control information for structured append in unbuffered mode.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after
decoding. The ECI is identified by an integer (up to 6 digits) which is encoded in the MaxiCode symbol by the ECI
indicator block. The escape sequence "\e[ECI_Number]" is used to place the ECI indicator block to the barcode text:

ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero
is optional.

ECI indicator blocks may be placed anywhere in the barcode text in a single or structured append set of MaxiCode
symbols, but cannot be within the primary message (structured carrier message) for modes 2 and 3:

In mode 2 and 3, the ECI blocks may only be invoked within secondary message. For example:

[)>01\r01\g99123456789\g123\g456\g\e[002]ABCg\e[123]DEF\r\t

In mode 4, 5 and 6, the ECI blocks may be invoked anywhere in the barcode text. For example:

ABC\e[23]DEFG\e[001]HIJKLMN

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until

2D Barcode FMX Components User Manual

58

the end of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI may
straddle two or more symbols.

Structured append

Up to eight MaxiCode symbols may be appended in a structured format to convey more data. If a symbol is part of a
structured append this shall be indicated by a structured append block in barcode text. The escape sequence "\s[<Index>,
<Amount>]" is used to place the structured append block to the barcode text:

Index: The position index of the symbol within the set of MaxiCode symbols in the structured append format. It's an
integer between 1 and 8 (including the boundaries) in string format.

Amount: The total amount of the symbol within the set of MaxiCode symbols in the structured append format. It's an
integer between 2 and 8 (including the boundaries) in string format.

The structured append block may only be placed once in the barcode text. The OnInvalidChar or OnInvalidDataChar event
will occur if the structured append block be placed more than once. The AllowEscape property should be set to true in
order to place the structured append block. The valid locations for structured append block in the barcode text are
specified in the following:

In the mode 2 and mode 3 of MaxiCode symbols, the structured append block shall be placed at beginning or end in
the barcode text, or anywhere in the secondary message. For example:

\s[2,5][)>01\r01\g99123456789\g123\g456\gABCDEF\r\t
[)>01\r01\g99123456789\g123\g456\g\s[2,5]ABCDEF\r\t
[)>01\r01\g99123456789\g123\g456\gABC\s[2,5]DEF\r\t
[)>01\r01\g99123456789\g123\g456\gABCDEF\s[2,5]\r\t
[)>01\r01\g99123456789\g123\g456\gABCDEF\r\t\s[2,5]

In the mode 4, 5 and 6 of MaxiCode symbols, the structured append block can be placed at anywhere in the
barcode text. For example:

\s[2,5]ABCDEFG
ABC\s[2,5]DEFG
ABCDEFG\s[2,5]

2D Barcode FMX Components User Manual

59

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

Mode

AutoMode

AllowEscape

CurrentMode (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.10 TBarcodeFmx2D_MicroPDF417

The component is used to create the MicroPDF417 Barcode symbols. It is defined in the pfmxMicroPDF417 unit.

MicroPDF417 is a multi-row symbology, derived from and closely based on PDF417. MicroPDF417 is
designed for applications with a need for improved area efficiency but without the requirement for
PDF417's maximum data capacity. A limited set of symbol sizes is available, together with a fixed level
of error correction for each symbol size. Module dimensions are user-specified to enable symbol production and reading
by a wide variety of techniques.

Symbol sizes

MicroPDF417 symbols shall conform with certain predefined combinations of number of stacked rows, columns, and
number of error-correction codewords, referred to as symbol sizes. The symbol size values from mpSize_1_11 to
mpSize_4_44 corresponding to these symbol sizes, and denotation the number of columns and rows in every symbol size.

2D Barcode FMX Components User Manual

60

For example, the symbol size value mpSize_2_23 denotations the MicroPDF417 symbol size is 23 stacked rows by 2
columns. These symbol size values are defined in the pfmxMicroPDF417 unit.

The RowHeight property can be used to specify the height for each row, in modules.

You can use the MinSize property to specify a minimum symbol size, and use the MaxSize property to specifiy a maximum
symbol size. According to the priority order specified by the StretchOrder property, the first symbol size that
accommodates the barcode text will be automatically selected between the minimum symbol size and the maximum
symbol size.

You can use the CurrentSize property to get the factual symbol size.

If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by the MaxSize property,
an OnInvalidLength or OnInvalidDataLength event will occur.

Quiet zones

The symbol shall include a quiet zone on all four sides. The minimum quiet zone is equal to 1 module on all four sides. So
the minimum values of LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal
to 1.

Error checking and correcting (ECC)

Each MicroPDF417 symbol contains at least seven error correction codewords. The error correction codewords provide
capability for both error detection and correction. The number of error correction codewords for a MicroPDF417 symbol is
fixed for each symbol size.

Character set

All 8-bit values can be encoded. The default interpretation shall be:

For values 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII).

For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).

This interpretation corresponds to ECI 000003.

MicroPDF417 has three unique data compaction modes as Text compaction mode, Numeric compaction mode,
and Byte compaction mode. All 8-bit values are encoded by switching internally between all 3 compaction modes:

Text compaction mode: Permits all printable ASCII characters, i.e. ASCII values from 32 to 126 inclusive
accordance with ISO/IEC 646, as well as selected control characters (CR, HT, and LF).

The mode has four sub-modes:

Alpha: Uppercase letters and space.

Lower: Lowercase letters and space.

Mixed: Numeric and some punctuations.

Punctuation: Some punctuations.

The sub-mode will be switched automatically in order to minimize the symbol size.

Numeric compaction mode: Permits efficient encoding of numeric data string.

Byte compaction mode: Permits all 256 possible 8-bit byte values to be encoded. This includes all ASCII
characters value from 0 to 127 inclusive and provides for international character set support.

2D Barcode FMX Components User Manual

61

In the specification of MicroPDF417, the initial compaction mode in effect at the start of each symbol shall always
be Byte compaction mode. You can change the initial compaction mode by using the DefaultEncodeMode and
DefaultTextEncodeMode properties, in order to macth the reader. If the poMicroPDF417Explicit901 value is
included in the Options property, a mode latch to Byte compaction mode "\901" will be explicitly inserted into
beginning of barcode text, in order to work with any reader.

The compaction mode will be switched automatically in a MicroPDF417 symbol in order to minimize the symbol
size. Also, you can manually switch the code set by using escape sequences "\900", "\901", "\902", and "\924". See
also the "Escape sequences" section below.

The FNC1 characters can be encoded for compatibility with some existing applications. There are two mode FNC1
characters to identify symbols encoding messages formatted according to specific predefined industry or
application specifications, also the FNC1 character can be used as the data field separator:

First position mode: FNC1 in this mode indicator identifies symbols encoding data formatted according to
the GS1 Application Identifiers standard. For this purpose, it shall only be used once in a symbol and shall be
placed at beginning of the barcode text.

If any one of escape sequences in "\903", "\904" and "\905" followed by an Application Identifier (2 or more
digits) is placed at beginning of barcode text, it represents a leading FNC1 character in "First position"
mode, and implies a mode latch to Text compaction mode or Numeric compaction mode. See also the
"Escape sequences" section below.

Also, you can place an escape sequence \f" followed by an Application Identifier (2 or more digits) at
beginning of barcode text instead of the "\903", "\904" or "\905" escape sequence followed by the Application
Identifier, to place the FNC1 character in "First position" mode. The component will automatically select one
of escape sequences from "\903", "\904" and "\905" depending on on the barcode text, in order to minimize
the symbol size.

The escape sequences "\906", "\907", "\912", "\914" and "\915" can be placed the FNC1 character in "First
position" mode too. See also the "Escape sequences" section below.

Second position mode: FNC1 in this mode indicator identifies symbols formatted in accordance with
specific industry or application specifications previously agreed with AIM International. It is immediately
followed by an application indicator assigned to identify the specification concerned by AIM International. For
this purpose, it shall only be used once in a symbol and shall be placed at beginning of the barcode. An
application indicator may take the form of any single Latin alphabetic character from the set "a" to "z" and "A"
to "Z", or a two-digit number.

If any one of escape sequences in "\908" and "\909" followed by an application indicator (single Latin
alphabetic character from the set "a" to "z" and "A" to "Z", or a two-digit number) is placed at beginning of
barcode text, it represents a leading FNC1 character in "Second position" mode, and implies a mode latch to
Text compaction mode or Numeric compaction mode. See also the "Escape sequences" section below.

Data field separator: The FNC1 character may also be used as a data field separator (i.e. at the end of a
variable-length data field), in which case it will be represented in the transmitted message as GS character
(ASCII value 29). The data field separator shall not be placed at beginning of barcode text.

If any one of escape sequences in "\903", "\904" and "\905" is placed in the barcode text, but not at beginning
of the barcode text, it represents a data field separator, and implies a mode latch to Text compaction mode or
Numeric compaction mode. See also the "Escape sequences" section below.

Also, you can use the escape sequence "\f" instead of the "\903", "\904" or "\905" to placed the FNC1
character as the data field separator. The component will automatically select one of escape sequences from

2D Barcode FMX Components User Manual

62

"\903", "\904" and "\905" based on the barcode text, in order to minimize the symbol size.

The appearance of an adjacent pair of repeated "\903", "\904" or "\905" escape sequences will cause the
decoder to divide the transmission at that point, but without transmitting the two implied GS (ASCII value 29)
characters themselves.

The ECI indicator blocks can be encoded for the standardized encoding of message interpretation information. The
escape sequence "\e[<ECI_Numnerm>]" can be used to place the ECI indicator block to barcode text. See also the
"Extended Channel Interpretation (ECI)" section below.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert
them to the barcode text:

\\: Insert a backslash to barcode text.

\5: Insert a 05 macro to barcode text. It's used to abbreviate the industry specific header "[)>{RS}05{GS}" and trailer
"{RS}{EOT}", in order to reduce the size of symbol. It must only be placed once at beginning of the barcode text and
it shall not be used in conjunction with a series of structured append symbols.

\6: Insert a 06 macro to barcode text. It's used to abbreviate the industry specific header "[)>{RS}06{GS}" and trailer
"{RS}{EOT}", in order to reduce the size of symbol. It shall only be placed once at beginning of the barcode text and
it shall not be used in conjunction with a series of structured append symbols.

\r: Instructs the reader to interpret the data contained within the MicroPDF417 symbol as programming for reader
initialisation. It shall only be placed once at beginning of the barcode text. In the case of a structured append
initialisation sequence, it shall appear in every symbol.

\e[<ECI_Numnerm>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation
(ECI)" section below.

\f: Insert a FNC1 character either in "First position" mode or as a data field separator, to the barcode text. One of
"\903", "\904", and "\905" will be automatically selected instead of the "\f", to insert to the symbol, depending on the
barcode text. If it's placed at beginning of barcode text, it represents a FNC1 character in "First position" mode,
otherwise, it represents a data field separator. See also the "Character set" section above.

Note, when the "poFirstFNC1MatchAI01" is included in the value of Options property, if the "\f" followed by a SSC-
14 number (including Application Identifier 01 and 13-digit data, the checkdigit isn't required) is placed at beginnig
of barcode text, the "\905" will be selected to encode the FNC1 character in order to reduce the symbol size (the
leading Application Identifier 01 is not encoded in the SSC-14 number).

\s[<Index>, <File_ID>, <File_Name>, <Amount>, <Time_Stamp>, <Sender>, <Address>, <File_Size>,
<Checksum>]: Insert structured append control block to barcode text in order to create the structured append
symbol. See also the "Structured append" section below.

\,: Insert a comma to File name, Sender or Address field in the structured append control block. It shall only be
placed in these fields of structured append control. See also the "Structured append" section below.

\t: Structured append terminator. If the segment count is unused in the structured append control block of a
structured append symbols set, this terminator is required in last symbol within the set of the structured append
symbols. Otherwise, it's optional. See also the "Structured append" section below.

\<nnn>: Insert a function codeword. This "<nnn>" can be one of these values:

900: Manually places a mode latch to Text compaction mode.

2D Barcode FMX Components User Manual

63

901: Manually places a mode latch to Byte compaction mode. It shall be used when the total number of
subsequent bytes to be encoded is not a multiple of 6, otherwise, it will be changed to "\924" automatically by
the component.

902: Manually places a mode latch to Numeric compaction mode.

903: If it's placed at beginning of barcode text, it represents a leading FNC1 character in "First position"
mode and indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification
(UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3). Also it implies a mode latch to
Mixed sub-mode of Text compaction mode.

If it's placed in the barcode text, but not at beginning of the barcode text, it represents an FNC1 character as
field separator, and implies a mode latch to Alpha sub-mode of Text compaction mode.

904: If it's placed at beginning of barcode text, it represents a leading FNC1 character in "First position"
mode and indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification
(UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3). Also it implies a mode latch to
Numeric compaction mode.

If it's placed in the barcode text, but not at beginning of the barcode text, it represents an FNC1 character as
field separator, and implies a mode latch to Mixed sub-mode of Text compaction mode.

905: If the "\905" followed by 13 required digits is placed at beginning of barcode text, it represents a leading
FNC1 character in "First position" mode and encodes a SCC-14 number together with subsequent 13 digits
(the Application Identifier 01 is implied and the last checkdigit isn't required). It indicates that the
MicroPDF417 symbol's data output shall conform with the Code128 specification (UCC/EAN-128 emulation,
the symbology identifier prefix is set to]C1 or]L3). Also it implies a mode latch to Numeric compaction mode.

If the it is placed in the barcode text, but not at beginning of the barcode text, it represents an FNC1 character
as field separator, and implies a mode latch to Numeric compaction mode.

906: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Mixed sub-
mode of Text compaction mode. It not only indicates that the MicroPDF417 symbol's data output shall
conform with the Code128 specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to
]C1 or]L3), but also indicates that a linear symbol printed below the symbol is "linked" to the data of the
symbol.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

907: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric
compaction mode. it not only indicates that the MicroPDF417 symbol's data output shall conform with the
Code128 specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but
also indicates that a linear symbol printed below the symbol is "linked" to the data of the symbol.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

908: The "\908" followed by an application indicator (single Latin alphabetic character from the set "a" to "z"
and "A" to "Z", or a two-digit number) represents a leading FNC1 character in "Second position" mode, and
indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification (used by
AIM Global, the symbology identifier prefix is set to]C2 or]L4). Also it implies a mode latch to Mixed sub-
mode of Text compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or

2D Barcode FMX Components User Manual

64

OnInvalidDataChar event will occur.

909: The "\909" followed by an application indicator (single Latin alphabetic character from the set "a" to "z"
and "A" to "Z", or a two-digit number) represents a leading FNC1 character in "Second position" mode, and
indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification (used by
AIM Global, the symbology identifier prefix is set to]C2 or]L4). Also it implies a mode latch to Numeric
compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

910: It indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification
(standard data package, the symbology identifier prefix is set to]C0 or]L5), and implies a mode latch to
Mixed sub-mode of Text compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

911: It indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification
(standard data package, the symbology identifier prefix is set to]C0 or]L5), and implies a mode latch to
Numeric compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

912[AAYYMMDDBB]: It represents a leading FNC1 character in "First position" mode and implies a mode
latch to Numeric compaction mode. Not only does it indicate that the MicroPDF417 symbol's data output shall
conform with the Code128 specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to
]C1 or]L3), but also it encodes that the data begins with a 6-digit date field (Application Identifier is 11, 13,
15, or 17), and this date field may be followed by an implied Application Identifier 10 or 21 as well:

AA: Application Identifier of the 6-digit data field. It can be one of 11, 13, 15, or 17.

YY: Year of the 6-digit data field.

MM: Month of the 6-digit data field.

DD: Day of the 6-digit data field.

BB: An optional Application Identifier that follows the 6-digit data field. It can be one of 10 or 21.

For example:

\912[1199010721]

Also, You can encode the 6-digit date field and the subsequent Application Identifier by yourself:

\912994071

You can explicitly insert a mode latch to Numeric compaction mode after the "\912" by using the "-":

\912[-1199010721]
\912[-]994071

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

914: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric

2D Barcode FMX Components User Manual

65

compaction mode. It not only indicates that the MicroPDF417 symbol's data output shall conform with the
Code128 specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but
also indicates that the data begins with an implied Application Identifier is 10.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

915: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric
compaction mode. it not only indicates that the MicroPDF417 symbol's data output shall conform with the
Code128 specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but
also indicates that the data begins with an implied Application Identifier is 21.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

916: Insert a 05 macro to barcode text. It shall only be placed once at beginning of the barcode text and it shall
not be used in conjunction with a series of structured append symbols. It's completely equivalent to escape
sequence "\5".

917: Insert a 06 macro to barcode text. It shall only be placed once at beginning of the barcode text and it shall
not be used in conjunction with a series of structured append symbols. It's completely equivalent to escape
sequence "\6".

918: It shall be used as a linkage flag to signal the presence of an associated linear component in a
composite symbol (other than an ECC.UCC composite symbol). The "\918" may be placed anywhere in the
barcode text.

919: Reserved.

920: It shall be used as a linkage flag to signal the presence of an associated linear component in an
ECC.UCC composite symbol. The "\920" may be placed anywhere in the barcode text.

921: Instructs the reader to interpret the data contained within the MicroPDF417 symbol as programming for
reader initialisation. It only shall be placed once at beginning of the barcode text. In the case of a structured
append initialisation sequence, it shall appear in every symbol. It's completely equivalent to escape sequence
"\r".

924: Manually places a mode latch to Byte compaction mode. It shall be used when the total number of
subsequent bytes to be encoded is an integer multiple of 6, otherwise, it will be changed to "\901"
automatically by the component.

For some reader, the meanings of some function codewords don't conform with the MicroPDF417 specification.
You can use the Options property to change the meanings of these fucntion codewords, in order to match the
reader.

Note, the "{RS}" is ASCII character RS (ASCII value 30), the "{GS}" is ASCII character GS (ASCII value 29), and the
"{EOT}" is ASCII character EOT (ASCII value 4).

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that
of the default character set. Five broad types of interpretations are supported in MicroPDF417:

International character sets (or code pages).

General purpose interpretations such as encryption and compaction.

2D Barcode FMX Components User Manual

66

User defined interpretations for closed systems.

Transmission of control information for structured append.

Transmission of uninterpreted MicroPDF417 codewords.

The ECI is identified by an integer (up to 6 digits) which is encoded in the MicroPDF417 by the ECI indicator block. The
escape sequence "\e[<ECI_Number>]" is used to place the ECI indicator block to the barcode text:

ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero
is optional.

ECI indicator blocks may be placed anywhere in the barcode text in a single or structured append set of MicroPDF417
symbols. For example:

ABC\e[123]DEFabc\e[000003]def

Normally, the sub-mode invoked immediately prior to the ECI escape sequence is preserved for the encodation
immediately after it. Thus, sub-mode latches and shifts are preserved across an ECI escape sequence; and thus a sub-
mode shift immediately before an ECI escape sequence is not ignored. If the value "poIgnoreShiftBeforeECI" is included
in the Options property, the sub-mode shift immediately before an ECI escape sequence is ignored, but a sub-mode latch
immediately before an ECI escape sequence is never ignored.

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until
the end of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI may
straddle two or more symbols.

Structured append

Structured append provides a mechanism for the data in a file too large to be split into blocks and be represented in more
than one MicroPDF417 symbol. Up to 99999 individual MicroPDF417 symbols may be used to encode data in structured
append.

Structured append symbols differ from ordinary MicroPDF417 symbols in that they contain additional control information in
a structured append control block. The control block defines the file ID, the concatenation sequence and optionally other
information about the file. structured append decoder uses the control block's information to reconstruct the file correctly
independently of symbol scanning order. The escape sequence "\s[<Index>, <File_ID>, <File_Name>, <Amount>,
<Time_Stamp>, <Sender>, <Address>, <File_Size>, <Checksum>]" is used to place the structured append control block
to the barcode text:

Index: The position index of the symbol within the set set of MicroPDF417 symbols in the structured append format.
It's an integer between 1 and 999999 (including the boundaries) in decimal string format. Note, the field is required.

File_ID: The file ID. It is a variable length numeric sequence which contains one or more triads of digits. Each triad
of digits is an integer between 000 to 899 (the leading zero is required), in decimal string format. For each related
structured append symbol, the file ID should be specified using the same numeric sequence. This ensures that all
reassembled symbol data belongs to the same distributed file representation. Note, the field is required.

File_Name: The file name. It's a text string with an implied reset to ECI 000002. The ECI escape sequences may
be used in order to set a different ECI within the field. Note, the field is optional.

Amount: The segment count (identifying the total number of structured append symbols in the distributed file). It's an
integer between 2 and 99999 (including the boundaries) in decimal string format. Note, the field is optional, if it's
used, that field shall appear in every segment.

Time_Stamp: The time stamp. It indicates the time stamp on the source file. It's a GMT time in "yyyy-mm-dd
hh:nn:ss" format:

2D Barcode FMX Components User Manual

67

yyyy: 4-digit year.

mm: 2-digit month, the leading zero is optional.

dd: 2-digit day, the leading zero is optional.

hh: 2-digit hour in 24 hours format, the leading zero is optional.

nn: 2-digit minute, the leading zero is optional.

ss: 2-digit second, the leading zero is optional.

Note, entire time portion or the minute and second portion are optional, i.e. the "yyyy-mm-dd", "yyyy-mm-dd hh",
and "yyyy-mm-dd hh:nn" formats are valid. If the hour, minute or second portion is not included, they defaults to
00.

Sender: The sender, It's a text string with an implied reset to ECI 000002. The ECI escape sequences may be used
in order to set a different ECI within the field. Note, the field is optional.

Address: The address, It's a text string with an implied reset to ECI 000002. The ECI escape sequences may be
used in order to set a different ECI within the field. Note, the field is optional.

File_Size: The file size. It's an integer in decimal string format, and indicates the size in bytes of the entire source
file. Note, the field is optional.

Checksum: The checksum, It's an integer value of the 16-bit (2 bytes) CRC checksum using the CCITT-16
polynomial computed over the entire source file, in decimal string format. You can use the GetCheckSum method to
calculate the checksum for a source file. Note, the field is optional.

The ECI escape sequences, "\900", "\901", "\902", and "\924" can be used in the File_Name, Sender and Address fields.
If you want place the comma in these fields, please use the escape sequence "\," instead.

An empty string indicates an unused optional field, the subsequent comma can be omitted if all fields of succeeding are
unused. otherwise, the comma is required. All unused fields at the end can be omitted.

The control block may only be placed once in the barcode text. Also, it shall be placed at end of the barcode text. The
OnInvalidChar or OnInvalidDataChar event will occur if the control block be placed more than once or it isn't placed at end
of the barcode text.

The following is an example of structured append symbol:

Position index: 2

File ID: 001 287 023

File name: Unused

Segment count: 5

Time stame: 05:30:00 GMT on 3 December, 2008

Sender: Unused

Address: USA

File size: Unused

Checksum: Unused

ABCDEFGHIJKLMN\s[2,001287023,,5,2008-12-03 05:30:00,,USA]

Note, if the segment count is unused, a structured append terminator, "\t" escape sequence is required in last symbol
within the set of structured append symbols. Otherwise, it's optional. The "\t" escape sequence shall be placed at the end
of the barcode text, after the structured append control block. For example:

2D Barcode FMX Components User Manual

68

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

MinSize

MaxSize

StretchOrder

RowHeight

DefauldEncodeMode

DefauldTextEncodeMode

UseECIDescriptor

Options

AllowEscape

CurrentSize (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

GetCheckSum

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

ABCDEFGHIJKLMN\s[5,001287023]\t

The AllowEscape property should be set to true in order to place the structured append control block and the terminator.

4.1.11 TBarcodeFmx2D_MicroQRCode

2D Barcode FMX Components User Manual

69

The component is used to create the Micro QR Code barcode symbols. It's defined in the pfmxMicroQRCode unit.

Micro QR Code is a very small QR Code that fits applications that require a smaller space and use smaller
amounts of data, such as ID of printed circuit boards and electronics parts, etc. The efficiency of data
encoding has been increased with the use of only one position detection pattern.

Micro QR Code is a two-dimensional matrix symbology. It is not capable of storing much data. However, because it can
store data for each symbol size more efficiently than QR Code, the size of Micro QR Code symbols does not significantly
increase, even though the amount of data is increased.

The Micro QR Code was created by Toyota subsidiary Denso-Wave in 1994.

Error checking and correcting (ECC)

There are three user-selectable levels of error correction, as shown in following table, offering the capability of recovery
from the amounts of damage in the table:

Values of ECCLevel property ECC levels Recevory capacities (%) (approx.)
elLowest L 7
elMedium M 15
elQuality Q 25

You can use the ECCLevel property to specify the error correction code level for a Micro QR Code symbol. It can be one
of these values: elLowest, elMedium, and elQuality, corresponding to the error checking and correcting levels L, M, and Q.
These values are defined in the pfmxMicroQRCode unit.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased, it may be determined depending on the
length of barcode text, and the error correction code level specified by the ECCLevel property (see also the "Symbol
sizes" section below). In other words, only the remaining capacity in current symbol size will be used to upgrade the error
correction code level. The property CurrentECCLevel can be used to get the factual error correction code level.

Note, for version 1 Micro QR Code symbols, the error checking and correcting capacity is limited to error detection only.
See also the "Symbol sizes" section below.

Symbol sizes

There are four sizes of Micro QR Code symbol, referred to as version 1 to 4, in increasing order of data capacity. You can
use the MinVersion and the MaxVersion properties to specifiy the minimum and maximum sizes for a Micro QR Code
symbol. They can be one of values from 1 to 4 (defined in the pfmxMicroQRCode unit), corresponding to the versions 1 to
4. The smallest symbol size that accommodates the barcode text will be automatically selected between minimum and
maximum symbol sizes. The CurrentVersion property can be used to get the factual symbol size.

The symbol sizes and the maximum data capacity of each version are listed in following table:

2D Barcode FMX Components User Manual

70

Version Symbol size (modules) ECC level
Data capacities

Numeric mode Alphanumeric mode Byte mode Kanji mode
1 11 * 11 L 5 - - -

2 13 * 13
L 10 6 - -
M 8 5 - -

3 15 * 15
L 23 14 9 6
M 18 11 7 4

4 17 * 17
L 35 21 15 9
M 30 18 13 8
Q 21 13 9 5

If the barcode text does not fill the maximum data capacity of the Micro QR Code symbol, remaining data capacity of the
symbol will be filled by using PAD characters. If the barcode text is so long that it cannot be encoded using the maximum
symbol size specified by the MaxVersion property, an OnInvalidLength or OnInvalidDataLength event will occur.

Quiet zones

The minimum quiet zone is equal to 2 modules on all four sides. So the minimum values of LeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 2.

Character set

All 8-bit values can be encoded. The default interpretation shall be:

For values 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII).

For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).

Encoding modes

Micro QR Code has four encoding modes as Numeric mode, Alphanumeric mode, Kanji mode and Byte mode
respectively in decreasing order of encoding density. All 256 8-bits value are encoded by switching automatically between
all 4 (the AllowKanjiMode property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set
to false) encoding modes. The character sets in each mode are listed in the following:

Numeric mode: Encodes data from the decimal digit set (0 to 9, byte values 48 to 57).

Alphanumeric mode: Encodes data from a set of 45 characters, i.e. 10 numeric digits (0 to 9) (byte values 48 to
57), 26 alphabetic characters (A - Z) (byte values 65 to 90) , and 9 symbols (SP, $, %, *, +, -, ., /, :) (byte values 32,
36, 37, 42, 43, 45 to 47, 58 respectively).

Note, alphanumeric mode is not available in version 1 Micro QR Code symbols.

Byte mode: All 8-bit values can be encoded.

Note, Byte mode is not available in version 1 or 2 Micro QR Code symbols.

Kanji mode: The Kanji mode efficiently encodes Kanji characters in accordance with the Shift JIS system based on
JIS X 0208. The Shift JIS values are shifted from the JIS X 0208 values. JIS X 0208 gives details of the shift coded
representation.

It may be possible to achieve a smaller symbol size by using the Kanji mode compaction rules when an appropriate
sequence of byte values occurs in the data. You can set the AllowKanjiMode property to false in order to disable the
Kanji mode.

Note, Kanji mode is not available in version 1 or 2 Micro QR Code symbols.

2D Barcode FMX Components User Manual

71

The EncodePolicy property indicates how to use these encoding mode by the component. This property can be one of
these values (defined in the pfmxMicroQRCode unit):

epMixingOptimal: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode
property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding
modes. The optimal combination of encoding modes will be used in order to minimize the symbol size.

epMixingQuick: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode
property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding
modes. The combination of encoding modes may not be the optimal one, in order to optimize encoding speed.

epSingleMode: The encoding mode will be selected automatically and applied to entire symbol, based on the
barcode text, in other words, the barcode text to be encoded will be analysed, and an appropriates lowest level
(highest encoding density) encoding mode will be selected, in order to minimize the symbol size, and the encoding
mode will not be switched in the sybmol. Note, the Kanji mode will not be used if the AllowKanjiMode property is set
to false.

2D Barcode FMX Components User Manual

72

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

Inversed

Mirrored

EncodePolicy

MaxSliceLen

MinVersion

MaxVersion

ECCLevel

ECCLevelUpgrade

AllowKanjiMode

CurrentVersion (Read only)

CurrentECCLevel (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.12 TBarcodeFmx2D_PDF417

The component is used to create the PDF417 Barcode symbols. It is defined in the pfmxPDF417
unit.

2D Barcode FMX Components User Manual

73

PDF417 is a continuous, stacked 2D linear barcode symbol format used in a variety of applications, primarily transport,
identification cards, and inventory management. PDF stands for Portable Data File. It can encode all 8-bit values.

The PDF417 symbology was invented by Dr. Ynjiun P. Wang at Symbol Technologies in 1991.

Symbol size

Each PDF417 symbol consists of a stack of vertically aligned rows with a minimum of 3 rows (maximum 90 rows). Each
stacked row shall include a minimum of 1 symbol character column (maximum 30 symbol character columns), excluding
start, stop and row indicator columns. They are defined in the pfmxPDF417Custom unit. The RowHeight property can be
used to specify the height for each stacked row, in modules. See diagram:

You can use the MinRows and the MaxRows properties to specifiy the minimum and maximum number of stacked rows for
a PDF417 symbol. And use the MinColumns and the MaxColumns properties to specifiy the minimum and maximum
number of symbol character columns for it. In other words, the MinRows and MinColumns properties specify a minimum
symbol size, and the MaxRows and MaxColumns properties specify a maximum symbol size. According to the priority
order specified by the StretchOrder property, the first symbol size that accommodates the barcode text will be
automatically selected between the minimum symbol size and the maximum symbol size.

You can use the CurrentRows property to get the factual number of stacked rows. And use the CurrentColumns property to
get the factual number of columns.

If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by the MaxRows and the
MaxColumns properties, an OnInvalidLength or OnInvalidDataLength event will occur.

Quiet zones

The symbol shall include a quiet zone on all four sides. The minimum quiet zone is equal to 4 modules on all four sides. So
the minimum values of LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal
to 4.

Error checking and correcting (ECC)

PDF417 symbols offer 9 levels of error correction, referred to as ECC 0 to ECC 8 respectively in increasing order of
recovery capacity. You can use the ECCLevel property to specify the error correction code level for a PDF417 symbol. It
can be one of values from elEcc_0 to elEcc_8, corresponding to error correction code level from ECC 0 to ECC 8. They
are defined in the pfmxPDF417Custom unit.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased, it may be determined based on the length
of barcode text, and the error correction code level specified by the ECCLevel property, in other words, only the remaining
capacity in current symbol size will be used to upgrade the error correction code level. The CurrentECCLevel property can
be used to get the factual error correction code level.

Character set

2D Barcode FMX Components User Manual

74

All 8-bit values can be encoded. The default interpretation shall be:

For values 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII).

For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).

This interpretation corresponds to ECI 000003.

PDF417 has three unique data compaction modes as Text compaction mode, Numeric compaction mode, and
Byte compaction mode. All 8-bit values are encoded by switching internally between all 3 compaction modes:

Text compaction mode: Permits all printable ASCII characters, i.e. ASCII values from 32 to 126 inclusive
accordance with ISO/IEC 646, as well as selected control characters (CR, HT, and LF).

The mode has four sub-modes:

Alpha: Uppercase letters and space.

Lower: Lowercase letters and space.

Mixed: Numeric and some punctuations.

Punctuation: Some punctuations.

The sub-mode will be switched automatically in order to minimize the symbol size.

Numeric compaction mode: Permits efficient encoding of numeric data string.

Byte compaction mode: Permits all 256 possible 8-bit byte values to be encoded. This includes all ASCII
characters value from 0 to 127 inclusive and provides for international character set support.

The compaction mode will be switched automatically in a PDF417 symbol in order to minimize the symbol size.
Also, you can manually switch the code set by using escape sequences "\900", "\901", "\902", and "\924". See also
the "Escape sequences" section below.

The FNC1 characters can be encoded for compatibility with some existing applications. There are two mode FNC1
characters to identify symbols encoding messages formatted according to specific predefined industry or
application specifications, also the FNC1 character can be used as the data field separator:

First position mode: FNC1 in this mode indicator identifies symbols encoding data formatted according to
the GS1 Application Identifiers standard. For this purpose, it shall only be used once in a symbol and shall be
placed at beginning of the barcode text.

If any one of escape sequences in "\903", "\904" and "\905" followed by an Application Identifier (2 or more
digits) is placed at beginning of barcode text, it represents a leading FNC1 character in "First position"
mode, and implies a mode latch to Text compaction mode or Numeric compaction mode. See also the
"Escape sequences" section below.

Also, you can place an escape sequence "\f" followed by an Application Identifier (2 or more digits) at
beginning of barcode text instead of the "\903", "\904" or "\905" escape sequence followed by the Application
Identifier, to place the FNC1 character in "First position" mode. The component will automatically select one
of escape sequences from "\903", "\904" and "\905" depending on the barcode text, in order to minimize the
symbol size.

The escape sequences "\906", "\907", "\912", "\914" and "\915" can be placed the FNC1 character in "First
position" mode too. See also the "Escape sequences" section below.

Second position mode: FNC1 in this mode indicator identifies symbols formatted in accordance with
specific industry or application specifications previously agreed with AIM International. It is immediately

2D Barcode FMX Components User Manual

75

followed by an application indicator assigned to identify the specification concerned by AIM International. For
this purpose, it shall only be used once in a symbol and shall be placed at beginning of the barcode. An
application indicator may take the form of any single Latin alphabetic character from the set "a" to "z" and "A"
to "Z", or a two-digit number.

If any one of escape sequences in "\908" and "\909" followed by an application indicator (single Latin
alphabetic character from the set "a" to "z" and "A" to "Z", or a two-digit number) is placed at beginning of
barcode text, it represents a leading FNC1 character in "Second position" mode, and implies a mode latch to
Text compaction mode or Numeric compaction mode. See also the "Escape sequences" section below.

Data field separator: The FNC1 character may also be used as a data field separator (i.e. at the end of a
variable-length data field), in which case it will be represented in the transmitted message as GS character
(ASCII value 29). The data field separator shall not be placed at beginning of barcode text.

If any one of escape sequences in "\903", "\904" and "\905" is placed in the barcode text, but not at beginning
of the barcode text, it represents a data field separator, and implies a mode latch to Text compaction mode or
Numeric compaction mode. See also the "Escape sequences" section below.

Also, you can use the escape sequence "\f" instead of the "\903", "\904" or "\905" to placed the FNC1
character as the data field separator. The component will automatically select one of escape sequences from
"\903", "\904" and "\905" depending on the barcode text, in order to minimize the symbol size.

The appearance of an adjacent pair of repeated "\903", "\904" or "\905" escape sequences will cause the
decoder to divide the transmission at that point (but without transmitting the two implied GS (ASCII value 29)
characters themselves).

The ECI indicator blocks can be encoded for the standardized encoding of message interpretation information. The
escape sequence "\e[<ECI_Numnerm>]" can be used to place the ECI indicator block to barcode text. See also the
"Extended Channel Interpretation (ECI)" section below.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert
them to the barcode text:

\\: Insert a backslash to barcode text.

\5: Insert a 05 macro to barcode text. It's used to abbreviate the industry specific header "[)>{RS}05{GS}" and trailer
"{RS}{EOT}", in order to reduce the size of symbol. It must only be placed once at beginning of the barcode text and
it shall not be used in Macro PDF417 symbols.

\6: Insert a 06 macro to barcode text. It's used to abbreviate the industry specific header "[)>{RS}06{GS}" and trailer
"{RS}{EOT}", in order to reduce the size of symbol. It shall only be placed once at beginning of the barcode text and
it shall not be used in Macro PDF417 symbols.

\r: Instructs the reader to interpret the data contained within the PDF417 symbol as programming for reader
initialisation. It shall only be placed once at beginning of the barcode text. In the case of a Macro PDF417
initialisation sequence, it shall appear in every symbol.

\e[<ECI_Numnerm>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation
(ECI)" section below.

\f: Insert a FNC1 character either in "First position" mode or as a data field separator, to the barcode text. One of
"\903", "\904", and "\905" will be automatically selected instead of the "\f", to insert to the symbol, depending on the
barcode text. If it's placed at beginning of barcode text, it represents a FNC1 character in "First position" mode,

2D Barcode FMX Components User Manual

76

otherwise, it represents a data field separator. See also the "Character set" section above.

Note, When the "poFirstFNC1MatchAI01" is included in the value of Options property, if the "\f" followed by a SSC-
14 number (including Application Identifier 01 and 13-digit data, the checkdigit isn't required) is placed at beginnig
of barcode, the "\905" will be selected to encode the FNC1 character in order to reduce the symbol size (the leading
Application Identifier 01 is not encoded in the SSC-14 number).

\s[<Index>, <File_ID>, <File_Name>, <Amount>, <Time_Stamp>, <Sender>, <Address>, <File_Size>,
<Checksum>]: Insert additional control information to barcode text in order to create the Marco PDF417 symbol.
See also the "Macro PDF417" section below.

\,: Insert a comma to File name, Sender or Address field of the Marco PDF417 control information. It shall only be
placed in these fields of Marco PDF417 control information. See also the "Macro PDF417" section below.

\t: Marco PDF417 terminator. If the segment count is unused in the control information of a Marco PDF417 symbols
set, this terminator is required in last symbol within the set of the Marco PDF417 symbols. Otherwise, it's optional.
See also the "Macro PDF417" section below.

\<nnn>: Insert a function codeword. This "<nnn>" can be one of these values:

900: Manually places a mode latch to Text compaction mode.

901: Manually places a mode latch to Byte compaction mode. It shall be used when the total number of
subsequent bytes to be encoded is not a multiple of 6, otherwise, it will be change to "\924" automatically by
the component.

902: Manually places a mode latch to Numeric compaction mode.

903: If it's placed at beginning of barcode text, it represents a leading FNC1 character in "First position"
mode and indicates that the PDF417 symbol's data output shall conform with the Code128 specification
(UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3). Also it implies a mode latch to
Mixed sub-mode of Text compaction mode.

If it's placed in the barcode text, but not at beginning of the barcode text, it represents an FNC1 character as
field separator, and implies a mode latch to Alpha sub-mode of Text compaction mode.

904: If it's placed at beginning of barcode text, it represents a leading FNC1 character in "First position"
mode and indicates that the PDF417 symbol's data output shall conform with the Code128 specification
(UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3). Also it implies a mode latch to
Numeric compaction mode.

If it's placed in the barcode text, but not at beginning of the barcode text, it represents an FNC1 character as
field separator, and implies a mode latch to Mixed sub-mode of Text compaction mode.

905: If the "\905" followed by 13 required digits is placed at beginning of barcode text, it represents a leading
FNC1 character in "First position" mode and encodes a SCC-14 number together with subsequent 13 digits
(the Application Identifier 01 is implied and the last checkdigit isn't required). It indicates that the PDF417
symbol's data output shall conform with the Code128 specification (UCC/EAN-128 emulation, the symbology
identifier prefix is set to]C1 or]L3). Also it implies a mode latch to Numeric compaction mode.

If the it is placed in the barcode text, but not at beginning of the barcode text, it represents an FNC1 character
as field separator, and implies a mode latch to Numeric compaction mode.

906: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Mixed sub-
mode of Text compaction mode. It not only indicates that the PDF417 symbol's data output shall conform with
the Code128 specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but

2D Barcode FMX Components User Manual

77

also indicates that a linear symbol printed below the symbol is "linked" to the data of the symbol.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

907: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric
compaction mode. It not only indicates that the PDF417 symbol's data output shall conform with the Code128
specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but also indicates
that a linear symbol printed below the symbol is "linked" to the data of the symbol.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

908: The "\908" followed by an application indicator (single Latin alphabetic character from the set "a" to "z"
and "A" to "Z", or a two-digit number) represents a leading FNC1 character in "Second position" mode, and
indicates that the PDF417 symbol's data output shall conform with the Code128 specification (used by AIM
Global, the symbology identifier prefix is set to]C2 or]L4). Also it implies a mode latch to Mixed sub-mode of
Text compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

909: The "\909" followed by an application indicator (single Latin alphabetic character from the set "a" to "z"
and "A" to "Z", or a two-digit number) represents a leading FNC1 character in "Second position" mode, and
indicates that the PDF417 symbol's data output shall conform with the Code128 specification (used by AIM
Global, the symbology identifier prefix is set to]C2 or]L4). Also it implies a mode latch to Numeric
compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

910: It indicates that the PDF417 symbol's data output shall conform with the Code128 specification
(standard data package, the symbology identifier prefix is set to]C0 or]L5), and implies a mode latch to
Mixed sub-mode of Text compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

911: It indicates that the PDF417 symbol's data output shall conform with the Code128 specification
(standard data package, the symbology identifier prefix is set to]C0 or]L5), and implies a mode latch to
Numeric compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

912[AAYYMMDDBB]: It represents a leading FNC1 character in "First position" mode and implies a mode
latch to Numeric compaction mode. Not only does it indicate that the PDF417 symbol's data output shall
conform with the Code128 specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to
]C1 or]L3), but also it encodes that the data begins with a 6-digit date field (Application Identifier is 11, 13,
15, or 17), and this date field may be followed by an implied Application Identifier 10 or 21 as well:

AA: Application Identifier of the 6-digit data field. It can be one of 11, 13, 15, or 17.

YY: Year of the 6-digit data field.

MM: Month of the 6-digit data field.

2D Barcode FMX Components User Manual

78

DD: Day of the 6-digit data field.

BB: An optional Application Identifier that follows the 6-digit data field. It can be one of 10 or 21.

For example:

\912[1199010721]

Also, You can encode the 6-digit date field and the subsequent Application Identifier by yourself:

\912994071

You can explicitly insert a mode latch to Numeric compaction mode after the "\912" by using the "-":

\912[-1199010721]
\912[-]994071

The escape sequence shall only be placed once at beginning of barcode text, otherwise the OnInvalidChar or
OnInvalidDataChar event will occur.

914: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric
compaction mode. It not only indicates that the PDF417 symbol's data output shall conform with the Code128
specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but also indicates
that the data begins with an implied Application Identifier is 10.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

915: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric
compaction mode. it not only indicates that the PDF417 symbol's data output shall conform with the Code128
specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but also indicates
that the data begins with an implied Application Identifier is 21.

The escape sequence shall only be placed once at beginning of barcode text, otherwise an OnInvalidChar or
OnInvalidDataChar event will occur.

916: Insert a 05 macro to barcode text. It shall only be placed once at beginning of the barcode text and it shall
not be used in Macro PDF417 symbols. It's completely equivalent to escape sequence "\5".

917: Insert a 06 macro to barcode text. It shall only be placed once at beginning of the barcode text and it shall
not be used in Macro PDF417 symbols. It's completely equivalent to escape sequence "\6".

918: It shall be used as a linkage flag to signal the presence of an associated linear component in a
composite symbol (other than an ECC.UCC composite symbol). The "\918" may be placed anywhere in the
barcode text.

919: Reserved.

920: It shall be used as a linkage flag to signal the presence of an associated linear component in an
ECC.UCC composite symbol. The "\920" may be placed anywhere in the barcode text.

921: Instructs the reader to interpret the data contained within the PDF417 symbol as programming for reader
initialisation. It only shall be placed once at beginning of the barcode text. In the case of a Macro PDF417
initialisation sequence, it shall appear in every symbol. It's completely equivalent to escape sequence "\r".

924: Manually places a mode latch to Byte compaction mode. It shall be used when the total number of
subsequent bytes to be encoded is an integer multiple of 6, otherwise, it will be changed to "\901"

2D Barcode FMX Components User Manual

79

automatically by the component.

For some reader, the meanings of some function codewords don't conform with the PDF417 specification. You can
use the Options property to change the meanings of these fucntion codewords, in order to match the reader.

Note, the "{RS}" is ASCII character RS (ASCII value 30), the "{GS}" is ASCII character GS (ASCII value 29), and the
"{EOT}" is ASCII character EOT (ASCII value 4).

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that
of the default character set. Five broad types of interpretations are supported in PDF417:

International character sets (or code pages).

General purpose interpretations such as encryption and compaction.

User defined interpretations for closed systems.

Transmission of control information for Macro PDF417.

Transmission of uninterpreted PDF417 codewords.

The ECI is identified by an integer (up to 6 digits) which is encoded in the PDF417 by the ECI indicator block. The escape
sequence "\e[<ECI_Number>]" is used to place the ECI indicator block to the barcode text:

ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero
is optional.

ECI indicator blocks may be placed anywhere in the barcode text in a single or Macro PDF417 set of symbols. For
example:

ABC\e[123]DEFabc\e[000003]def

Normally, the sub-mode invoked immediately prior to the ECI escape sequence is preserved for the encodation
immediately after it. Thus, sub-mode latches and shifts are preserved across an ECI escape sequence; and thus a sub-
mode shift immediately before an ECI escape sequence is not ignored. If the value "poIgnoreShiftBeforeECI" is included
in the Options property, the sub-mode shift immediately before an ECI escape sequence is ignored, but a sub-mode latch
immediately before an ECI escape sequence is never ignored.

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until
the end of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI may
straddle two or more symbols.

Compact PDF417

In an environment where space considerations are a primary concern and symbol damage is
unlikely (e.g. an office), the right row indicators may be omitted and the stop pattern may be
reduced to one module width bar. This reduction version is called Compact PDF417, which is
fully decoder compatible with standard PDF417.

Note, the Compact PDF417 was referred as Truncated PDF417 in previous standard.

You can set the Compact property to true in order to generate a Compact PDF417 symbol.

Macro PDF417

Macro PDF417 provides a mechanism for the data in a file too large to be split into blocks and be represented in more
than one PDF417 symbol. This mechanism is similar to the structured append feature in other symbologies. Up to 99999
individual PDF417 symbols may be used to encode data in Macro PDF417.

2D Barcode FMX Components User Manual

80

Each Macro PDF417 symbol shall contain additional control information to enable the original data file to be properly
reconstructed, irrespective of the sequence in which the individual PDF417 symbols are scanned and decoded. The
escape sequence "\s[<Index>, <File_ID>, <File_Name>, <Amount>, <Time_Stamp>, <Sender>, <Address>, <File_Size>,
<Checksum>]" is used to place the control information to the barcode text:

Index: The position index of the symbol within the set of Marco PDF417 symbols. It's an integer between 1 and
999999 (including the boundaries) in decimal string format. Note, the field is required.

File_ID: The file ID. It is a variable length numeric sequence which contains one or more triads of digits. Each triad
of digits is an integer between 000 to 899 (the leading zero is required), in decimal string format. For each related
Macro PDF417 symbol, the file ID should be specified using the same numeric sequence. This ensures that all
reassembled symbol data belongs to the same distributed file representation. Note, the field is required.

File_Name: The file name. It's a text string with an implied reset to ECI 000002. The ECI escape sequences may
be used in order to set a different ECI within the field. Note, the field is optional.

Amount: The segment count (identifying the total number of Macro PDF417 symbols in the distributed file). It's an
integer between 2 and 99999 (including the boundaries) in decimal string format. Note, the field is optional, if it's
used, that field shall appear in every segment.

Time_Stamp: The time stamp. It indicates the time stamp on the source file. It's a GMT time in "yyyy-mm-dd
hh:nn:ss" format:

yyyy: 4-digit year.

mm: 2-digit month, the leading zero is optional.

dd: 2-digit day, the leading zero is optional.

hh: 2-digit hour in 24 hours format, the leading zero is optional.

nn: 2-digit minute, the leading zero is optional.

ss: 2-digit second, the leading zero is optional.

Note, entire time portion or the minute and second portion are optional, i.e. the "yyyy-mm-dd", "yyyy-mm-dd hh",
and "yyyy-mm-dd hh:nn" formats are valid. If the hour, minute or second portion is not included, they defaults to
00.

Sender: The sender, It's a text string with an implied reset to ECI 000002. The ECI escape sequences may be used
in order to set a different ECI within the field. Note, the field is optional.

Address: The address, It's a text string with an implied reset to ECI 000002. The ECI escape sequences may be
used in order to set a different ECI within the field. Note, the field is optional.

File_Size: The file size. It's an integer in decimal string format, and indicates the size in bytes of the entire source
file. Note, the field is optional.

Checksum: The checksum, It's an integer value of the 16-bit (2 bytes) CRC checksum using the CCITT-16
polynomial computed over the entire source file, in decimal string format. You can use the GetCheckSum method to
calculate the checksum for a source file. Note, the field is optional.

The ECI escape sequences, "\900", "\901", "\902", and "\924" can be used in the File_Name, Sender and Address fields.
If you want place the comma in these fields, please use the "\," instead.

An empty string indicates an unused optional field, the subsequent comma can be omitted if all fields of succeeding are
unused. otherwise, the comma is required. All unused fields at the end can be omitted.

2D Barcode FMX Components User Manual

81

The control information may only be placed once in the barcode text. Also, it shall be placed at end of the barcode text.
The OnInvalidChar or OnInvalidDataChar event will occur if the control information be placed more than once or it isn't
placed at end of the barcode text.

The following is an example of Marco PDF417 symbol:

Position index: 2

File ID: 001 287 023

File name: Unused

Segment count: 5

Time stame: 05:30:00 GMT on 3 December, 2008

Sender: Unused

Address: USA

File size: Unused

Checksum: Unused

ABCDEFGHIJKLMN\s[2,001287023,,5,2008-12-03 05:30:00,,USA]

Note, if the segment count is unused, a Marco PDF417 terminator, "\t" escape sequence is required in last symbol within
the set of Marco PDF417 symbols. Otherwise, it's optional. The "\t" escape sequence shall be placed at the end of the
barcode text, after the control information. For example:

ABCDEFGHIJKLMN\s[5,001287023]\t

The AllowEscape property should be set to true in order to place the control information and the terminator.

2D Barcode FMX Components User Manual

82

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

MinRows

MaxRows

MinColumn

MaxColumn

StretchOrder

ECCLevel

ECCLevelUpgrade

RowHeight

Compact

Options

AllowEscape

CurrentRows (Read only)

CurrentColumns (Read only)

CurrentECCLevel (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

GetCheckSum

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.13 TBarcodeFmx2D_QRCode

2D Barcode FMX Components User Manual

83

The component is used to create the QR Code barcode symbols. It's defined in the pfmxQRCode unit.

A QR Code is a two-dimensional matrix symbology, readable by QR scanners, mobile phones with a camera,
and smartphones. The code consists of black modules arranged in a square pattern on white background. It
has position detection patterns on three of its four corners. The information encoded can be text, URL or other
data.

Common in Japan, where it was created by Toyota subsidiary Denso-Wave in 1994, the QR Code is one of the most
popular types of two-dimensional barcodes. Although initially used for tracking parts in vehicle manufacturing, QR Codes
are now used in a much broader context, including both commercial tracking applications and convenience-oriented
applications aimed at mobile phone users.

QR is the abbreviation for Quick Response, as the creator intended the code to allow its contents to be decoded at high
speed.

Error checking and correcting (ECC)

There are four user-selectable levels of error correction, as shown in following table, offering the capability of recovery from
the amounts of damage in the table:

Values of ECCLevel property ECC levels Recevory capacities (%) (approx.)
elLowest L 7
elMedium M 15
elQuality Q 25
elHighest H 30

You can use the ECCLevel property to specify the error correction code level for a QR Code symbol. It can be one of these
values: elLowest, elMedium, elQuality, and elHighest, corresponding to the error checking and correcting levels L, M, Q,
and H. These values are defined in the pfmxRCode unit.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased, it may be determined depending on the
length of barcode text, and the error correction code level specified by the ECCLevel property (see also the "Symbol
sizes" section below). In other words, only the remaining capacity in current symbol size will be used to upgrade the error
correction code level. The property CurrentECCLevel can be used to get the factual error correction code level.

Symbol sizes

There are forty sizes of QR Code symbol. referred to as version 1 to 40, in increasing order of data capacity. You can use
the MinVersion and the MaxVersion properties to specifiy the minimum and maximum sizes for a QR Code symbol. They
can be one of values from 1 to 40 (defined in the pfmxQRCode unit), corresponding to the versions 1 to 40. The smallest
symbol size that accommodates the barcode text will be automatically selected between minimum and maximum symbol
sizes. The CurrentVersion property can be used to get the factual symbol size.

These symbol sizes and the maximum data capacity of each version are listed in following table:

Version Symbol size (modules) ECC level
Data capacities

Numeric mode Alphanumeric mode Byte mode Kanji mode

1 21 * 21

L 41 25 17 10
M 34 20 14 8
Q 27 16 11 7
H 17 10 7 4

2D Barcode FMX Components User Manual

84

2 25 * 25

L 77 47 32 20

M 63 38 26 16
Q 48 29 20 12
H 34 20 14 8

3 29 * 29

L 127 77 53 32
M 101 61 42 26
Q 77 47 32 20
H 58 35 24 15

4 33 * 33

L 187 114 78 48
M 149 90 62 38
Q 111 67 46 28
H 82 50 34 21

5 37 * 37

L 255 154 106 65
M 202 122 84 52
Q 144 87 60 37
H 106 64 44 27

6 41 * 41

L 322 195 134 82
M 255 154 106 65
Q 178 108 74 45
H 139 84 58 36

7 45 * 45

L 370 224 154 95
M 293 178 122 75
Q 207 125 86 53
H 154 93 64 39

8 49 * 49

L 461 279 192 118
M 365 221 152 93
Q 259 157 108 66
H 202 122 84 52

9 53 * 53

L 522 335 230 141
M 432 262 180 111
Q 312 189 130 80
H 235 143 98 60

10 57 * 57

L 652 395 271 167
M 513 311 213 131
Q 364 221 151 93
H 288 174 119 74

11 61 * 61

L 772 468 321 198
M 604 366 251 155
Q 427 259 177 109
H 331 200 137 85

12 65 * 65

L 883 535 367 226
M 691 419 287 177
Q 489 296 203 125
H 374 227 155 96

13 69 * 69

L 1022 619 425 262
M 796 483 331 204

2D Barcode FMX Components User Manual

85

Q 580 352 241 149
H 427 259 177 109

14 73 * 73

L 1101 667 458 282
M 871 528 362 223
Q 621 376 258 159
H 468 283 194 120

15 77 * 77

L 1250 758 520 320
M 991 600 412 254
Q 703 426 292 180
H 530 321 220 136

16 81 * 81

L 1408 854 586 361
M 1082 656 450 277
Q 775 470 322 198
H 602 365 250 154

17 85 * 85

L 1548 938 644 397
M 1212 734 504 310
Q 876 531 364 224
H 674 408 280 173

18 89 * 89

L 1725 1046 718 442
M 1346 816 560 345
Q 948 574 394 243
H 746 452 310 191

19 93 * 93

L 1903 1153 792 488
M 1500 909 624 384
Q 1063 644 442 272
H 813 493 338 208

20 97 * 97

L 2061 1249 858 528
M 1600 970 666 410
Q 1159 702 482 297
H 919 557 382 235

21 101 * 101

L 2232 1352 929 572
M 1708 1035 711 438
Q 1224 742 509 314
H 969 587 403 248

22 105 * 105

L 2409 1460 1003 618
M 1872 1134 779 480
Q 1358 823 565 348
H 1056 640 439 270

23 109 * 109

L 2620 1588 1091 672
M 2059 1248 857 528
Q 1468 890 611 376
H 1108 672 461 284

24 113 * 113

L 2812 1704 1171 721
M 2188 1326 911 561
Q 1588 963 661 407

H 1228 744 511 315

2D Barcode FMX Components User Manual

86

25 117 * 117

L 3057 1853 1273 784
M 2395 1451 997 614
Q 1718 1041 715 440
H 1286 779 535 330

26 121 * 121

L 3283 1990 1367 842
M 2544 1542 1059 652
Q 1804 1094 751 462
H 1425 864 593 365

27 125 * 125

L 3517 2132 1465 902
M 2701 1637 1125 692
Q 1933 1172 805 496
H 1501 910 625 385

28 129 * 129

L 3669 2223 1528 940
M 2857 1732 1190 732
Q 2085 1263 868 534
H 1581 958 658 405

29 133 * 133

L 3909 2369 1628 1002
M 3035 1839 1264 778
Q 2181 1322 908 559
H 1677 1016 698 430

30 137 * 137

L 4158 2520 1732 1066
M 3289 1994 1370 843
Q 2358 1429 982 604
H 1782 1080 742 457

31 141 * 141

L 4147 2677 1840 1132
M 3486 2113 1452 894
Q 2473 1499 1030 634
H 1897 1150 790 486

32 145 * 145

L 4686 2840 1952 1201
M 3693 2238 1538 947
Q 2670 1618 1112 684
H 2022 1226 842 518

33 149 * 149

L 4965 3009 2068 1273
M 3909 2369 1628 1002
Q 2805 1700 1168 719
H 2157 1307 898 553

34 153 * 153

L 5253 3183 2188 1347
M 4134 2506 1722 1060
Q 2949 1787 1228 756
H 2301 1394 958 590

35 157 * 157

L 5529 3351 2303 1417
M 4343 2632 1809 1113
Q 3081 1867 1283 790
H 2361 1431 983 605

36 161 * 161

L 5836 3537 2431 1496

M 4588 2780 1911 1176

2D Barcode FMX Components User Manual

87

Q 3244 1966 1351 832
H 2524 1530 1051 647

37 165 * 165

L 6153 3729 2563 1577
M 4775 2894 1989 1224
Q 3417 2071 1423 876
H 2625 1591 1093 673

38 169 * 169

L 6479 3927 2699 1661
M 5039 3054 2099 1292
Q 3599 2181 1499 923
H 2735 1658 1139 701

39 173 * 173

L 6743 4087 2809 1729
M 5313 3220 2213 1362
Q 3791 2298 1579 972
H 2927 1774 1219 750

40 177 * 177

L 7089 4296 2953 1817
M 5596 3391 2331 1435
Q 3993 2420 1663 1024
H 3057 1852 1273 784

If the barcode text does not fill the maximum data capacity of the QR Code symbol, remaining data capacity of the symbol
will be filled by using PAD characters. If the barcode text is so long that it cannot be encoded using the maximum symbol
size specified by the MaxVersion property, an OnInvalidLength or OnInvalidDataLength event will occur.

Quiet zones

The minimum quiet zone is equal to 4 modules on all four sides. So the minimum values of LeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 4.

Character set

All 8-bit values can be encoded. The default interpretation shall be:

For values 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII).

For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).

This interpretation corresponds to ECI 000003.

The FNC1 characters can be encoded for compatibility with some existing applications. In QR Code symbology,
there are two mode FNC1 characters to identify symbols encoding messages formatted according to specific
predefined industry or application specifications:

First position: FNC1 in this mode indicator identifies symbols encoding data formatted according to the
GS1 Application Identifiers standard. For this purpose, it shall only be used once in a symbol and shall be
placed at beginning of the barcode text, and after any ECI indicator block or structured append block (if
exists).

The escape sequence "\t" or "\f" followed by an Application Identifier (2 or more digits), can be used to placed
the FNC1 character in "First position" mode to barcode text. For example, the barcode symbol
(01)00012345678905 can be represented using any one of following sequences:

\t0100012345678905
\f0100012345678905

2D Barcode FMX Components User Manual

88

Where the GS1 specifications call for the FNC1 character to be used as a data field separator (i.e. at the end
of a variable-length data field), QR Code symbols shall use the GS character (byte value 29) to perform this
function. In this case, any one of "\g", "\d", "\t", and "\f" escape sequences can be used to place the GS
character to the barcode text. For example:

\t010001234567890521512\f2018

Second position: FNC1 in this mode indicator identifies symbols formatted in accordance with specific
industry or application specifications previously agreed with AIM International. It is immediately followed by an
application indicator assigned to identify the specification concerned by AIM International. For this purpose, it
shall only be used once in a symbol and shall be placed at beginning of the barcode, and after any ECI
indicator block or structured append block (if exists). An application indicator may take the form of any single
Latin alphabetic character from the set "a" to "z" and "A" to "Z", or a two-digit number.

There are two ways to place a FNC1 character in "Second position" mode:

The escape sequence "\d" followed by an application indicator (single Latin alphabetic character from
the set "a" to "z" and "A" to "Z", or a two-digit number) can be used to placed the FNC1 character in
"Second position" mode to barcode text. For example:

\dA0001234567890
\d010001234567890

The escape sequence "\f[<AI>]" can be used to placed the FNC1 character in "Second position" mode
to barcode text:

AI: The application indicator (single Latin alphabetic character from the set "a" to "z" and "A" to
"Z", or a two-digit number).

For example:

\f[A]0001234567890
\f[01]0001234567890

Where the application specifications call for the FNC1 character to be used as a data field separator, QR
Code symbols shall use the GS character (byte value 29) to perform this function. In this case, any one of "\g",
"\d", "\t", and "\f" escape sequences can be used to place the GS character to the barcode text. For example:

\dA0001234567890521512\g2018

Note, the "First position" and "Second position" are not used in a literal sense but is a historical reference to the
position of the FNC1 symbol character in Code 128 symbols.

The ECI indicator blocks can be encoded for the standardized encoding of message interpretation information. The
escape sequence "\e[<ECI_Number>]" can be used to place the ECI indicator block to barcode text. See also the
"Extended Channel Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place the FNC1 characters or the ECI indicator blocks.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert
them to the barcode text:

\\: Insert a backslash to barcode text.

2D Barcode FMX Components User Manual

89

\f: Insert a FNC1 character to barcode text. There are three usages:

Insert a FNC1 character in "First position" mode to the barcode text. In this case, it shall only be used once in
a symbol and shall be placed at beginning of the barcode text, and after any ECI indicator block or structured
append block (if exists), followed by an Application Identifier (2 or more digits). For example:

\f0100012345678905

Insert a FNC1 character in "Second position" mode to the barcode text. In this case, it shall only be used once
in a symbol and shall be placed at beginning of the barcode text, and after any ECI indicator block or
structured append block (if exists), followed by an application indicator (single Latin alphabetic character from
the set "a" to "z" and "A" to "Z", or a two-digit number), which is enclosed in square brackets. For example:

\f[01]00012345678905

Insert a GS character (ASCII value 29) as the data field separator to the barcode text. In this case, it can be
placed anywhere but at beginning of the barcode text. For example:

\t010001234567890521512\f2018

See also the "Character set" section above.

\t: Insert a FNC1 character in "First position" mode to barcode text, or insert a GS character (ASCII value 29) as the
data field separator to the barcode text. There are two usages:

Insert a FNC1 character in "First position" mode to the barcode text. It's completely equivalent to escape
sequence "\f" that inserts the FNC1 character in "First position" mode. In this case, it shall only be used once
in a symbol and shall be placed at beginning of the barcode text, and after any ECI indicator block or
structured append block (if exists), followed by an Application Identifier (2 or more digits). For example:

\t0100012345678905

Insert a GS character (ASCII value 29) as the data field separator to the barcode text. It's completely
equivalent to the escape sequence "\f" that inserts the FNC1 character as the data field separator. In this
case, it can be placed anywhere but at beginning of the barcode text. For example:

\f010001234567890521512\t2018

See also the "Character set" section above.

\d: Insert a FNC1 character in "Second position" mode to barcode text, or insert a GS character (ASCII value 29) as
the data field separator to the barcode text. There are two usages:

Insert a FNC1 character in "Second position" mode to the barcode text. It's completely equivalent to escape
sequence "\f" that inserts the FNC1 character in "Second position" mode. In this case, it shall only be used
once in a symbol and shall be placed at beginning of the barcode text, and after any ECI indicator block or
structured append block (if exists), followed by an application indicator (single Latin alphabetic character from
the set "a" to "z" and "A" to "Z", or a two-digit number). For example:

\d0100012345678905

Insert a GS character (ASCII value 29) as the data field separator to the barcode text. It's completely
equivalent to the escape sequence "\f" that inserts the FNC1 character as the data field separator. In this
case, it can be placed anywhere but at beginning of the barcode text. For example:

\f010001234567890521512\d2018

2D Barcode FMX Components User Manual

90

See also the "Character set" section above.

\g: Insert a GS character (ASCII value 29) to the barcode text. When FNC1 is used as a data field separator, it can
be used instead of the FNC1 character. For example:

\f010001234567890521512\g2018

See also the "Character set" section above.

\e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation
(ECI)" section below.

\s[<Index>, <Amound>, <Parity>]: Insert a structured append block to barcode text in order to create the symbol in
a structured append. See also the "Structured append" section below.

Encoding modes

QR Code has four encoding modes as Numeric mode, Alphanumeric mode, Kanji mode and Byte mode respectively in
decreasing order of encoding density. All 256 8-bits value are encoded by switching automatically between all 4 (the
AllowKanjiMode property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false)
encoding modes. The character sets in each mode are listed in the following:

Numeric mode: Encodes data from the decimal digit set (0 to 9) (byte values 48 to 57).

Alphanumeric mode: Encodes data from a set of 45 characters, i.e. 10 numeric digits (0 to 9) (byte values 48 to
57), 26 alphabetic characters (A - Z) (byte values 65 to 90) , and 9 symbols (SP, $, %, *, +, -, ., /, :) (byte values 32,
36, 37, 42, 43, 45 to 47, 58 respectively).

Byte mode: All 8-bit values can be encoded.

Kanji mode: The Kanji mode efficiently encodes Kanji characters in accordance with the Shift JIS system based on
JIS X 0208. The Shift JIS values are shifted from the JIS X 0208 values. JIS X 0208 gives details of the shift coded
representation.

It may be possible to achieve a smaller symbol size by using the Kanji mode compaction rules when an appropriate
sequence of byte values occurs in the data. You can set the AllowKanjiMode property to false in order to disable the
Kanji mode.

The EncodePolicy property indicates how to use these encoding mode by the component. This property can be one of
these values (defined in the pfmxQRCode unit):

epMixingOptimal: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode
property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding
modes. The optimal combination of encoding modes will be used in order to minimize the symbol size.

epMixingQuick: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode
property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding
modes. The combination of encoding modes may not be the optimal one, in order to optimize encoding speed.

epSingleMode: The encoding mode will be selected automatically and applied to entire symbol, based on the
barcode text, in other words, the barcode text to be encoded will be analysed, and an appropriates lowest level
(highest encoding density) encoding mode will be selected, in order to minimize the symbol size, and the encoding
mode will not be switched in the sybmol. Note, the Kanji mode will not be used if the AllowKanjiMode property is set
to false.

Extended Channel Interpretation (ECI)

2D Barcode FMX Components User Manual

91

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that
of the default character set. Four broad types of interpretations are supported in QR Code:

International character sets (or code pages).

General purpose interpretations such as encryption and compaction.

User defined interpretations for closed systems.

Control information for structured append in unbuffered mode.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after
decoding. The ECI is identified by an integer (up to 6 digits) which is encoded in the QR Code symbol by the ECI indicator
block. The escape sequence "\e[<ECI_Number>]" is used to place the ECI indicator block to the barcode text:

ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero
is optional.

ECI indicator blocks may be placed anywhere in the barcode text in a single or structured append set of QR Code
symbols. For example:

ABC\e[123]DEFabc\e[000003]def

The default interpretation for QR Code is ECI 000003 representing the ISO/IEC 8859-1 character set.

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until
the end of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI may
straddle two or more symbols.

Structured append

In order to handle larger messages than are practical in a single symbol, a data message can be distributed across
several QR Code symbols. Up to 16 QR Code symbols may be appended in a structured format to convey more data. If a
symbol is part of a structured append this shall be indicated by a structured append block in barcode text. The escape
sequence "\s[<Index>, <Amount>, <Parity>]" is used to place the structured append block to the barcode text:

Index: The position index of the symbol within the set of QR Code symbols in the structured append format. It's an
integer between 1 and 16 (including the boundaries) in string format.

Amount: The total amount of the symbol within the set of QR Code symbols in the structured append format. It's an
integer between 2 and 16 (including the boundaries) in string format.

Parity: The parity data. It shall be an 8-bit byte value obtained by using the GetParity method with the original input
data as its parameter. It is identical in all symbols in the structured append, enabling it to be verified that all symbols
read form part of the same structured append message.

The AllowEscape property should be set to true in order to place the structured append block. The structured append
block may only be placed once in the barcode text. Also, it shall be placed at beginning of the barcode text. The
OnInvalidChar or OnInvalidDataChar event will occur if the structured append block be placed more than once, or it isn't
placed at beginning of the barcode text. The following is the examples of structured append:

\s[2, 5, 125]ABCDEFGabcdefg1234567890

2D Barcode FMX Components User Manual

92

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

Inversed

Mirrored

EncodePolicy

MaxSliceLen

MinVersion

MaxVersion

ECCLevel

ECCLevelUpgrade

AllowKanjiMode

AllowEscape

CurrentVersion (Read only)

CurrentECCLevel (Read only)

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

GetParity

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.14 TBarcodeFmx2D_RSS14

The component is used to create the RSS-14 (Reduce Space Symbology) barcode symbols, including RSS-14

2D Barcode FMX Components User Manual

93

(Standard), RSS-14 Truncated, RSS-14 Stacked, and RSS-14 Stacked Omnidirectional. It's defined in the pfmxRss14
unit.

RSS-14 is a continuous linear symbology capable encoding the full GS1 14-digit EAN.UCC item
identification number (Global Trade Item Numbers, GTINs). The first digit represents the Indicator
digit to indicate packaging level. The following twelve digits are the GS1 Company Prefix and the
Item Reference. The last digit represents the Check Digit. A leading Application Identifier (01) is
implied and is not encoded in the symbol.

Styles

There are four styles (versions) of RSS-14 symbols, as described in following list:

Standard: The standard style RSS-14 barcode symbol encodes the full 14-digit EAN.UCC
item identification (Global Trade Item Numbers, GTINs) in a symbol that can be
omnidirectionally scanned by suitably configured point-of-sale laser scanners.

Truncated: RSS-14 Truncated is structured and encoded in the same way as the standard
RSS-14 format, except its height is reduced to a 13 modules minimum. It may be used for
small items, instead of RSS Limited. It may also be used when the four-column 2D component is desired in order to
minimize the height of an EAN.UCC Composite symbol.

RSS-14 Truncated is designed to be read by scanners such as wands, handheld lasers, and linear and 2D imagers.
It cannot be read efficiently by omnidirectional flat-bed and presentation scanners.

Stacked: RSS-14 Stacked is an RSS-14 Truncated two-row format. It may be used for small items
instead of RSS Limited when the available space is too narrow for RSS Limited. Moreover, the
narrower width of RSS-14 Stacked might allow for a larger module width and potentially higher print quality.
However, RSS Limited or RSS-14 Truncated should be used in preference to the stacked format whenever space
permits without reducing module width, as they are easier to scan with a wand or linear scanner.

RSS-14 Stacked is designed to be read by scanners such as wands, handheld lasers, and linear and 2D imagers. It
cannot be read efficiently by omnidirectional flat-bed and presentation scanners.

Stacked Omnidirectional: RSS-14 Stacked Omnidirectional is a full height RSS-14 two-
row format. It can be used instead of RSS-14 for omnidirectional scanning applications
where the different aspect ratio is needed.

You can use the Style property to specify which style will be used. It can be one of these values:
rsStandard, rsTruncated, rsStacked, and rsStackedOmnidirectional, corresponding to the
Standard, Truncated, Stacked, and Stacked Omnidirectional styls. They are defined in the pfmxRss14 unit.

Symbol size

RSS-14 (Standard): Normally, the overall size of this format is 96 modules wide by a minimum of 33 modules high.
You can use the TotalHeight property to specify the height for an RSS-14 (Standard) symbol, in modules.

RSS-14 Truncated: Normally, the overall size of this format is 96 modules wide by a minimum of 13 modules high.
You can use the TotalHeight property to specify the height for an RSS-14 Truncated symbol, in modules.

RSS-14 Stacked: Normally, the top row is 5 modules high and the bottom row is 7 modules high with a 1 module
(minimum) high separator pattern between the two rows. So the overall size of this format is 50 modules wide by 13
modules high. You can use the SeparatorRowHeight property to specify the height of separator pattern between the
two rows, in modules. And use the TotalHeight property to specify the total height for an RSS-14 Stacked symbol, in
modules. the height of separator pattern is included in the total height.

2D Barcode FMX Components User Manual

94

RSS-14 Stacked Omnidirectional: Normally, Each row is 33 modules high minimum with a 3 modules high
separator pattern between the two rows. So the overall size of this format is 50 modules wide by 69 modules high
minimum. You can use the SeparatorRowHeight property to specify the height of separator pattern between the two
rows, in modules. And use the TotalHeight property to specify the total height for an RSS-14 Stacked
Omnidirectional symbol, in modules. the height of separator pattern is included in the total height.

If both the Link2D and Show2DSeparator properties are set to Ture, a contiguous separator pattern is represented and its
minimum height is 1 module (the pattern height can be specified by the SeparatorRowHeight property). In this case, the
height of the RSS-14 symbol will be reached to increase the contiguous separator pattern height.

Quiet zones

No quiet zones is required outside the bounds of the RSS-14 symbol. The first and last elements may appear wider than
one module without affecting the symbol if the adjacent background area is the same color. So the minimum values of
LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 0.

Character set

All 10 numeric characters, i.e. 0 through 9.

Check digit

All styles of RSS-14 symbols have a check digit, it is a form of redundancy check used for error detection. It consists of a
single numeric character computed from the other character in the EAN.UCC item identification number.

If the AutoCheckDigit property is set to false, the check digit shall be included in the barcode text. Otherwise, It wii be
appended automatically by the component, so the check digit isn't required in the barcode text.

Data capactiy

All styles of RSS-14 symbologies encode the full GS1 14-digit EAN.UCC item identification number (Global Trade Item
Numbers, GTINs) in a symbol, including a leading indicator digit, 12 data characters (GS1 Company Prefix and the Item
Reference), and a check digit. Note, A leading Application Identifier (01) is implied and is not encoded in the symbol, so it
isn't required in the barcode text.

If the AutoCheckDigit property is set to false, the check digit shall be included in the barcode text, so the length of barcode
text shall is 14 numeric characters, and the last numeric character in the barcode text is the check digit.

If the AutoCheckDigit property is set to true, the check digit will be appended automatically by the component, so the
length of barcode text shall is 13 numeric characters, and the check digit isn't required in the barcode text.

Composite symbols

Any styles of an RSS-14 barcode symbol can be used together with a CC-A or CC-B barcode symbol to create the
EAN.UCC composite symbol. Only a 4-column CC-A or a 4-column CC-B symbol can be used together with an RSS-14
(Standard) or an RSS-14 Truncated symbol. Only a 3-column CC-A or a 3-column CC-B symbol can be used together with
an RSS-14 Stacked or an RSS-14 Stacked Omnidirectional symbol.

If you use it together with a CC-A or a CC-B component that's from another components package, the Link2D property
should be set to true in order to denote the RSS-14 symbol is used as the linear component in an EAN.UCC composite
symbol. In this case, the Show2DSeparator property specifies whether to represent the contiguous separator pattern
between the RSS-14 linear and the 2D components in the EAN.UCC composite symbol.

2D Barcode FMX Components User Manual

95

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

TotalHeight

Link2D

Show2DSeparator

Style

SeparatorRowHeight

AutoCheckDigit

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.15 TBarcodeFmx2D_RSSExpanded

The component is used to create the RSS Expanded barcode symbols, including RSS Expanded (Standard) and RSS
Expanded Stacked. It's defined in the pfmxRssExpanded unit.

RSS Expanded is a variable length linear symbology capable of encoding up to 74
numeric or 41 alphabetic characters of AI element string data internally represented as a
binary number. RSS Expanded can be used to encode primary and supplementary data
intended for use in retail point-of-sale and other applications where the scanners and
application software have been appropriately programmed.

RSS Expanded can be scanned and decoded in up to 22 segments and then reconstructed. This facilitates

2D Barcode FMX Components User Manual

96

omnidirectional scanning.

Styles

There are two styles (versions) of RSS Expanded symbols, as described in following list:

Standard: RSS Expanded (Standard) is a single row, variable length linear
symbology. It can identify small items and carry more information than the current
EAN/UPC barcode.

Stacked: RSS Expanded Stacked is an RSS Expanded multi-row format. It may be stacked
in two to eleven rows. RSS Expanded Stacked is used when the symbol area or print
mechanism is not wide enough to accommodate the full single row symbol.

You can use the Style property to specify which style will be used. It can be one of values rsStandard
a nd rsStacked, corresponding to the Standard and Stacked styls. They are defined in the
pfmxRss14Expanded unit.

Symbol size

In both RSS Expanded (Standard) and RSS Expandedn Stacked symbols, the barcode text will be encoded as a symbol
segments sequence, there are between 4 and 22 symbol segments (including the boundaries) in the sequence. The
symbol sizes are based on the number of symbol segments, and are described in following list:

Standard: It's a variable length symbology, the symbol width is based on the number of symbol segments. The
symbol height are specified by the RowHeight property, in modules.

Stacked: The symbol width is based on the number of symbol segments in each stacked row. The symbol height is
based on the number of symbol stacked rows and the height of each stacked row.

You can use the RowSymbols property to specify the number of symbol segments in each row for an RSS
Expanded Stacked symbol, between 2 and 20 (including the boundaries, only even values are valid), the barcode
symbol will be stacked in two to eleven rows based on the total numbers of symbol segments and the number of
symbol segments in each row. There are three separator patterns between the stacked rows.

Each row is minimum 34 modules high, and each separator pattern is minimum 1 module high. You can use the
RowHeight property to specify the height for each row, in modules. And use the SeparatorRowHeight property to
specify the height of each separator pattern, in modules.

If both the Link2D and Show2DSeparator properties are set to Ture, a contiguous separator pattern is represented and its
minimum height is 1 module, the height can be specified by the SeparatorRowHeight property too.

Quiet zones

No quiet zones is required outside the bounds of the RSS Expanded symbol. The first and last elements may appear
wider than one module without affecting the symbol if the adjacent background area is the same color. So the minimum
values of LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 0.

Character set

A subset of ISO/IEC 646, consisting of the upper and lower case letters (A-Z, a-z), digits (0-9), space, and 19 selected
punctuation characters (!:%&()*+,-./:;<=>?_) in addition to the special function character, FNC1.

If you want insert the FNC1, please insert the "^" character instead.

Note, in the barcode text, all Application Identifiers should be enclosed in parentheses "(" and ")", the parentheses are only
for identifying Application Identifiers, and they are not encoded into the barcode symbol. If you want encode the

2D Barcode FMX Components User Manual

97

parentheses "(" and ")" in an Application Identifier element string, please use the "{" and "}" instead.

Data capactiy

74 numeric or 41 alphabetic characters.

Note, the RSS Expanded data capacity depends on the encodation method. The maximum is 74 digits for (01) + other
AIs, the maximum is 70 digits for any AIs, and the maximum is 77 digits for (01) + (392x) + any AIs.

Composite symbols

Any style of an RSS Expanded barcode symbol can be used together with a 4-column CC-A or a 4-column CC-B barcode
symbol to create the EAN.UCC composite symbol. In this case, the RSS Expanded Stacked symbol shall contain at least
four symbol characters within its top row, in other words, the value of RowSymbols property should be greater than or
equal to 4.

If you use it together with a CC-A or a CC-B component that's from another components package, the Link2D property
should be set to true in order to denote the RSS Expanded symbol is used as the linear component in an EAN.UCC
composite symbol. In this case, the Show2DSeparator property specifies whether to represent the contiguous separator
pattern between the RSS Expanded linear and the 2D components in the EAN.UCC composite symbol.

2D Barcode FMX Components User Manual

98

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

Style

RowHeight

RowSymbols

SeparatorRowHeight

Link2D

Show2DSeparator

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

4.1.16 TBarcodeFmx2D_RSSLimited

The component is used to create the RSS Limited barcode symbols. It's defined in the pfmxRssLimited unit.

RSS Limited is a continuous linear symbology capable encoding the entire GS1 14-digit EAN.UCC item
identification number (Global Trade Item Numbers, GTINs) set with Indicator digits 1 and 0. The first digit
represents the Indicator digit to indicate packaging level (only 0 and 1). The following twelve digits are the GS1 Company
Prefix and the Item Reference. The last digit represents the Check Digit. A leading Application Identifier (01) is implied
and is not encoded in the symbol.

Symbol size

2D Barcode FMX Components User Manual

99

Normally, the overall size of the RSS Limited symbol is 74 modules wide by a minimum of 10 modules high.

If both the Link2D and Show2DSeparator properties are set to Ture, a contiguous separator pattern is represented and its
minimum height is 1 module (the pattern height can be specified by the SeparatorRowHeight property). In this case, the
height of the RSS Limited symbol will be reached to increase the contiguous separator pattern height. Namely, If height of
the contiguous separator pattern is 1 module, then the minimum height of the RSS Limited symbol is 11 modules.

The TotalHeight property can be used to specify the height for an RSS Limited symbol, in modules. If the contiguous
separator pattern is represented, its height is included in the property value.

Quiet zones

No quiet zones is required outside the bounds of the RSS Limited symbol. The first and last elements may appear wider
than one module without affecting the symbol if the adjacent background area is the same color. So the minimum values of
LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 0.

Character set

All 10 numeric characters, i.e. 0 through 9.

Check digit

The RSS Limited symbols have a check digit, it is a form of redundancy check used for error detection. It consists of a
single numeric character computed from the other character in the EAN.UCC item identification number.

If the AutoCheckDigit property is set to false, the check digit shall be included in the barcode text. Otherwise, It wii be
appended automatically by the component, so the check digit isn't required in the barcode text.

Data capactiy

The RSS Limited symbology encodes the entire GS1 14-digit EAN.UCC item identification number (Global Trade Item
Numbers, GTINs) set with Indicator digits 1 and 0 in a symbol, including a leading indicator digit (only 0 and 1), 12 data
characters (GS1 Company Prefix and the Item Reference), and a Check digit. Note, A leading Application Identifier (01) is
implied and is not encoded in the symbol, so it isn't required in the barcode text.

Note, First numeric character is the Indicator digit in the barcode text, only 1 and 0 can be encoded.

If the AutoCheckDigit property is set to false, the check digit shall be included in the barcode text, so the length of barcode
text shall is 14 numeric characters, and the last numeric character in the barcode text is the check digit.

If the AutoCheckDigit property is set to true, the check digit will be appended automatically by the component, so the
length of barcode text shall is 13 numeric characters, and the check digit isn't required in the barcode text.

Composite symbols

The RSS Limited barcode symbol can be used together with a 3-column CC-A or a 3-column CC-B barcode symbol to
create the EAN.UCC composite symbol.

If you use it together with a CC-A or a CC-B component that's from another components package, the Link2D property
should be set to true in order to denote the RSS Limited symbol is used as the linear component in an EAN.UCC
composite symbol. In this case, the Show2DSeparator property specifies whether to represent the contiguous separator
pattern between the RSS Limited linear and the 2D components in the EAN.UCC composite symbol.

2D Barcode FMX Components User Manual

100

Properties:

Image

Barcode

Data

Module

BarColor

SpaceColor

Opacity

Orientation

Stretch

LeftMargin

TopMargin

BarcodeWidth

BarcodeHeight

ShowQuietZone

LeadingQuietZone

TopQuietZone

TrailingQuietZone

BottomQuietZone

EnableUpdateDB

Locked

TotalHeight

Link2D

SeparatorRowHeight

Show2DSeparator

AutoCheckDigit

Methods:

Create

Destroy

Assign

Clear

Draw

Size

DrawTo

DrawToSize

Print

PrintSize

Events:

OnChange

OnEncode

ParseBarcodeIndex

OnInvalidChar

OnInvalidLength

OnInvalidDataChar

OnInvalidDataLength

OnDrawBarcode

Properties:

Barcode2D

Methods:

Create

Destroy

Assign

Save

4.2 TSaveFmx2D

It is the base class of all image saving components, these components can be used to save barcode symbol to picture file
in multiple formats. And it cannot be instantiated. It's defined in the pfmxSave2D unit.

2D Barcode FMX Components User Manual

101

Events:

OnSave

OnSaved

Properties:

Barcode2D

ColorDepth

XPPM

YPPM

Methods:

Create

Destroy

Assign

Save

Events:

OnSave

OnSaved

Properties:

Barcode2D

DeviceWidthInPixel

DeviceHeightInPixel

DeviceWidthInMM

DeviceHeightInMM

DeviceWidthInUM

DeviceHeightInUM

EmbedBarcodeText

Methods:

Create

Destroy

Assign

Save

Events:

OnSave

OnSaved

4.2.1 TSaveFmx2D_Bmp

The component is used to save the barcode symbol to image file in Bitmap image (BMP) format. It is defined in the
pfmxSave2D_Bmp unit.

4.2.2 TSaveFmx2D_Emf

The component is used to save the barcode symbol to image file in Enhaced Metafile Format (EMF). It is defined in the
pfmxSave2D_Emf unit.

4.2.3 TSaveFmx2D_Eps

2D Barcode FMX Components User Manual

102

Properties:

Barcode2D

EmbedBarcodeText

Methods:

Create

Destroy

Assign

Save

Events:

OnSave

OnSaved

Properties:

Barcode2D

Version

ColorDepth

Interlaced

EmbedBarcodeText

Methods:

Create

Destroy

Assign

Save

Events:

OnSave

OnSaved

Properties:

Barcode2D

Quality

The component is used to save the barcode symbol to image file in Encapsulated PostScript (EPS) format. It is defined in
the pfmxSave2D_Eps unit.

4.2.4 TSaveFmx2D_Gif

The component is used to save the barcode symbol to image file in Graphics Interchange Format (GIF). It is defined in the
pfmxSave2D_Gif unit.

4.2.5 TSaveFmx2D_Jpg

The component is used to save the barcode symbol to image file in JPEG image (JPG, JPEG) format. It is defined in the
pfmxSave2D_Jpg unit.

2D Barcode FMX Components User Manual

103

Methods:

Create

Destroy

Assign

Save

Events:

OnSave

OnSaved

Properties:

Barcode2D

ColorDepth

Interlaced

CompressionLevel

EmbedBarcodeText

Methods:

Create

Destroy

Assign

Save

Events:

OnSave

OnSaved

Properties:

Barcode2D

EmbedBarcodeText

Methods:

Create

Destroy

Assign

Save

4.2.6 TSaveFmx2D_Png

The component is used to save the barcode symbol to image file in Portable Network Graphics (PNG) format. It is defined
in the pfmxSave2D_Png unit.

4.2.7 TSaveFmx2D_Svg

The component is used to save the barcode symbol to image file in Scalable Vector Graphics (SVG) format. It is defined
in the pfmxSave2D_Svg unit.

2D Barcode FMX Components User Manual

104

Events:

OnSave

OnSaved

Properties:

Barcode2D

Placeable

LogicUnitsPerInch

Methods:

Create

Destroy

Assign

Save

Events:

OnSave

OnSaved

Properties:

Barcode2D

Methods:

Create

Destroy

Assign

Copy

4.2.8 TSaveFmx2D_Wmf

The component is used to save the barcode symbol to image file in Windows Metafile Format (WMF). It is defined in the
pfmxSave2D_Wmf unit.

4.3 TCopyFmx2D

The component is used to copy the barcode symbol to clipboard. It is defined in the pfmxCopy2D unit.

4.4 TUserWorkArea

It contains fields to specify the parameters (e.g. position, size, etc.) for the barcode symbol. It is defined in the
pfmxBarcode2D unit.

Syntax:

2D Barcode FMX Components User Manual

105

type
{ Defined in the pfmxBarcode2D unit }
TUserWorkArea = record
WCanvas: TCanvas;
WBarcode: string;
WBarColor: TAlphaColor;
WSpaceColor: TAlphaColor;
WOpacity: Single;
WModule: Single;
WLeftInPixels: Single;
WTopInPixels: Single;
WAngle: Single;
WShowQuietZone: Boolean;
WMirror: Boolean;
WBarcodeData: TBytes;
WBarcodeLength: Integer;
WQuietZoneWidthInModules_Left: Integer;
WQuietZoneWidthInModules_Top: Integer;
WQuietZoneWidthInModules_Right: Integer;
WQuietZoneWidthInModules_Bottom: Integer;
WSymbolZoneWidthInModules: Integer;
WSymbolZoneHeightInModules: Integer;
WTotalWidthInPixels: Single;
WTotalHeightInPixels: Single;
WSymbolZoneOffsetInPixels_Left: Single;
WSymbolZoneOffsetInPixels_Top: Single;
WAlpha: Single;
WOrigin: TPointF;
WDensityRate: Single;

end;

Fields:

WCanvas: TCanvas; The target canvas that the barcode symbol will be represented on it.

WBarcode: string; The barcode text which will be encoded to the barcode symbol.

If you use the Barcode property, or use Draw, Size, DrawTo (Syntax 1), DrawToSize (Syntax 1), Print (Syntax 1), or
PrintSize (Syntax 1) method, It's equal to the value of Barcode property.

If you use the DrawTo (Syntax 2), DrawToSize (Syntax 2), Print (Syntax 2), or PrintSize (Syntax 2) method, it is equal
to their Barcode parameter value.

If you use the Data property, or use DrawTo (Syntax 3), DrawToSize (Syntax 3), Print (Syntax 3), and PrintSize
(Syntax 3) methods, it's an empty string.

WBarColor: TAlphaColor; It's the color used by all bars (Stacked 2D barcode symbology and Linear 1D barcode
symbology) or dark modules (Matrix 2D barcode symbology) in the barcode symbol.

WSpaceColor: TAlphaColor; It's the color used by all spaces (Stacked 2D barcode symbology and Linear 1D
barcode symbology) or light modules (Matrix 2D barcode symbology) in the barcode symbol. Also the leading,
trailing, top, and bottom quiet zones are represented using the color too.

2D Barcode FMX Components User Manual

106

WOpacity: Single; It's the transparency-level of entire barcode symbol, where 1 is not transparant at all, 0.5 is 50%
see-through, and 0 is completely transparent.

WModule: Single; It's the module size in pixels (Draw, DrawTo) or dots (Print). The horizontal resolution is used.
See also the "Module" property.

WLeftInPixels: Single; It's the margin between the barcode symbol and the left side of the canvas in pixels (Draw,
DrawTo) or dots (Print). The horizontal resolution is used. If the quiet zones are represented, they are included in the
barcode symbol. See also the "LeftMargin" property.

WTopInPixels: Single; It's the margin between the barcode symbol and the top side of the canvas in pixels (Draw,
DrawTo) or dots (Print). The vertical resolution is used. If the quiet zones are represented, they are included in the
barcode symbol. See also the "TopMargin" property.

WAngle: Single; It's the angle to rotate the barcode symbol anticlockwise, in degrees.

WShowQuietZone: Boolean; Denotes whether the leading, trailing, top and bottom quiet zones are represented.
See also the "ShowQuietZone" property.

WMirror: Boolean; Denotes whether the barcode symbol is reversed right to left (horizontal mirror reversal). See
also the "Mirrored" property.

WBarcodeData: TBytes; The barcode text which will be encoded to the barcode symbol, it's a byte array.

If you use the Barcode property, or use Draw, Size, DrawTo (Syntax 1), DrawToSize (Syntax 1), Print (Syntax 1), or
PrintSize (Syntax 1) method, it is the UTF-8 byte sequences converted from the Barcode property value (the BOM
isn't included, if you used the OnEncode event function, it's equal to its Data parameter value).

If you use the DrawTo (Syntax 2), DrawToSize (Syntax 2), Print (Syntax 2), or PrintSize (Syntax 2) method, it is the
UTF-8 bytes sequence converted from their Barcode parameter value (the BOM isn't included, if you used the
OnEncode event function, it's equal to its Data parameter value).

If you use the Data property, it's equal to the value of Data property. If you use DrawTo (Syntax 3), DrawToSize
(Syntax 3), Print (Syntax 3), or PrintSize (Syntax 3) method, it is equal to their Data parameter value.

WBarcodeLength: Integer; It's the length of WBarcodeData feild's value by byte count.

WQuietZoneWidthInModules_Left: Integer; It's the width of leading quiet zone if it is represented, in modules. See
also the "LeadingQuietZone" property.

WQuietZoneWidthInModules_Top: Integer; It's the height of top quiet zone if it is represented, in modules. See
also the "TopQuietZone" property.

WQuietZoneWidthInModules_Right: Integer; It's the width of trailing quiet zone if it is represented, in modules.
See also the "TrailingQuietZone" property.

WQuietZoneWidthInModules_Bottom: Integer; It's the height of bottom quiet zone if it is represented, in modules.
See also the "BottomQuietZone" property.

WSymbolZoneWidthInModules: Integer; It's the height of entire barcode symbol before the barcode symbol is
rotated, in modules. The quiet zones aren't included even if they are represented.

WSymbolZoneHeightInModules: Integer; It's the width of entire barcode symbol before the barcode symbol is
rotated, in modules. The quiet zones aren't included even if they are represented.

WTotalWidthInPixels: Single; It's the height of entire barcode symbol before the barcode symbol is rotated, in

2D Barcode FMX Components User Manual

107

pixels (Draw, DrawTo) or dots (Print). The horizontal resolution is used. The quiet zones are included if they are
represented.

WTotalHeightInPixels: Single; It's the width of entire barcode symbol before the barcode symbol is rotated, in
pixels (Draw, DrawTo) or dots (Print). The horizontal resolution is used. The quiet zones are included if they are
represented.

WSymbolZoneOffsetInPixels_Left: Single; It's the horizontal offset from the upper-left corner of entire barcode
symbol (the quiet zones are included if they are represented) to the upper-left of the barcode symbol (the quiet
zones aren't included even if they are represented) before the barcode symbol is rotated, in in pixels (Draw,
DrawTo) or dots (Print). The horizontal resolution is used.

WSymbolZoneOffsetInPixels_Top: Single; It's the vertical offset from the upper-left corner of entire barcode
symbol (the quiet zones are included if they are represented) to the upper-left of the barcode symbol (the quiet
zones aren't included even if they are represented) before the barcode symbol is rotated, in in pixels (Draw,
DrawTo) or dots (Print). The horizontal resolution is used.

WAlpha: Single; It's the angle that the barcode symbol will be rotated, in radian.

WOrigin: TPointF; The coordinate of the upper-left corner of the barcode symbol after the barcode symbol is
rotated, in pixels (Draw, DrawTo) or dots (Print). The horizontal resolution is used.

WDensityRate: Single; It is the ratio of the horizontal resolution DPI and veritical resolution DPI of the canvas.

2D Barcode FMX Components User Manual

108

Chapter 5. FAQs

5.1 How to download the full version

Please download the installation package using the download link that's sent from us after you purchase the components
package, within the validity period.

If the download link expired, please visit the "Manage your licenses" page to request a new download link.

Please open the page then enter your order ID, license user name or license e-mail address to locate your order, then
click on the oder ID to display it, choose a license and click on the "Request a new download link", the new download
link will be sent to this license e-mail address automatically. Please use the new download link whthin the validity period.

5.2 I forgot my license key

If you forgot the license key, please visit the "Manage your licenses" page to retrieve it. Please open the page then enter
your order ID, license user name or license e-mail address to locate your order, then click on the oder ID to display it,
choose a license and click on the "Retrieve the license key", the license key will be sent to the license e-mail address
automatically.

2D Barcode FMX Components User Manual

109

http://www.han-soft.com/releases/barcodefmx2d/license/licenses.php
http://www.han-soft.com/releases/barcodefmx2d/license/licenses.php

Chapter 6. Information

6.1 Support

This help is designed to be used on-screen. Many troubleshooting questions can be answered by this help. If your question
is not covered in the help document, please read the next section.

Technical Support

If you have a specific technical issue, if you would like to send general comments about the product, please reads the
following:

Please read the "Frequently Asked Question" in our web site to see whether your question is already answered.

Please visit the "Support" page in our web site, and submit your problem to us.

You may email the technical support issues to support@han-soft.com. The registered users will get priority, so
include your order number in the email to ensure a prompt response.

In order to provide more accurate service, please provides the following information:

Whether the problem can be reproduced? How is it reproduced?

What development system do you use?

Which version of 2D Barcode FMX components do you use?

Feedback

If you have any comments or concerns about this product please send them to feedback@han-soft.com. Your feedback is
very important for us because it helps to us to make our software better and more efficient. Many of its features have been
heavily influenced by comments from users. So if you have a grand idea for a new feature, or a better way of doing
something, please drop us a note.

6.2 Purchase

The 2D Barcode FMX Components is a Shareware product. If you find it useful, please purchase the full version of this
product. After your purchase you will receive an e-mail with a download link of full version for downloading.

Why should I purchase

After your purchase you can continue to use the 2D Barcode FMX Components and entitles you to the following benefits:

The trial version is fully functional, though limited, and adds a watermark that appears in the final 2D Barcode

2D Barcode FMX Components User Manual

110

http://www.han-soft.com/faqs.php
http://www.han-soft.com/support.php
mailto:support@han-soft.com
mailto:feedback@han-soft.com

symbol. So purchase will allow you to use 2D Barcode FMX Components without limitations.

You are entitled to free upgrades during 1 year since the date of your purchase. This includes both major and minor
upgrades in appropriate time period. It means that during one year you can download and install the latest versions
of the software from our site.

You will be entitled to a 50% discount for all future major upgrades if you purchased the software more than one year
ago, and allow you to have free upgrades for another year.

You will be always entitled to free minor upgrades for the version that is purchased.

You will also have priority in technical support.

Purchasing the product may also entitle you to discounts on new software releases from Han-soft.

Finally, by purchasing the software, you provide us with the resources and incentive to support the software with
updates and to develop additional quality products in the future.

How to purchase

You can purchase the 2D Barcode FMX Components by using following steps:

1. Please open the "Purchase" web page of our web site http://www.han-soft.com.

2. In the "Purchase" web page, choose the license type and open the order form web page. Fill in the information on
the web page, and choose from the available ordering options that best suits your needs. We accept credit card
orders, PayPal orders, orders by phone and fax, checks, purchase orders, and wire transfers.

3. Once the purchase is completed, the download link of full version and the license key will be sent instantaneously
to your email address. If you do not receive your download link and license key within a few minutes, please check
your SPAM filter inbox.

Important:

When completing the order form, please double-check that your email address is correct. If it is not, you will be
unable to receive the download link and the license key.

6.3 Contact us

Contact us if you have any questions, comments or suggestions:

Web site

Main site: http://www.han-soft.com

Mirror: http://www.han-soft.biz

E-mail

General information: information@han-soft.com

Technical support: support@han-soft.com

Sales: sales@han-soft.com

Service: service@han-soft.com

Feedback: feedback@han-soft.com

Web information: webmaster@han-soft.com

2D Barcode FMX Components User Manual

111

http://www.han-soft.com
http://www.han-soft.com/purchase.php?product=barcodefmx2d
http://www.han-soft.com
http://www.han-soft.com/purchase.php?product=barcodefmx2d
http://www.han-soft.com
http://www.han-soft.biz
mailto:information@han-soft.com
mailto:support@han-soft.com
mailto:sales@han-soft.com
mailto:service@han-soft.com
mailto:feedback@han-soft.com
mailto:webmaster@han-soft.com

6.4 End-User License Agreement

This End-User License Agreement ("EULA") is a legal agreement between you (either an individual or a single entity) and
the Han-soft, which includes computer software and may include associated media, printed materials, and "online" or
electronic documentation ("SOFTWARE PRODUCT").

By installing, copying, or otherwise using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If
you do not agree to the terms of this EULA, do not install or use the SOFTWARE PRODUCT; you may, however, return it
to your place of purchase for a full refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and international copyright treaties, as well as other
intellectual property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.

1. GRANT OF LICENSE.

This EULA grants you the following rights:

Installation and Use.

You may install and use an unlimited number of copies of the TRIAL SOFTWARE PRODUCT.

Reproduction and Distribution.

You may reproduce and distribute an unlimited number of copies of the TRIAL SOFTWARE PRODUCT;
provided that each copy shall be a true and complete copy, including all copyright and trademark notices,
and shall be accompanied by a copy of this EULA. Copies of the TRIAL SOFTWARE PRODUCT may be
distributed as a standalone product or included with your own product.

Purchase.

You may use the registered SOFTWARE PRODUCT on that number of computers for which you have
purchased a separate license as indicated on the invoice or sales receipt. If the SOFTWARE PRODUCT is
installed on a network server or other storage device, you must purchase a license for each separate
computer on which the SOFTWARE PRODUCT is used. A license for the SOFTWARE PRODUCT may not
be shared by alternating use of the SOFTWARE PRODUCT between different computers. The primary user
of a computer for which a license has been purchased may make and use one copy of the SOFTWARE
PRODUCT on his or her portable computer. You may also make one copy of the SOFTWARE PRODUCT
for back-up or archival purposes. Otherwise, you may not copy the SOFTWARE PRODUCT in whole or in
part. You may not transfer your rights under this license.

2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

Limitations on Components and Source Code.

You may distribute the runtime packages with your end-user applications. You must not distribute the library
in such a way that it allows direct programmatic access to the SOFTWARE PRODUCT, or such that it
competes with the SOFTWARE PRODUCT in any way - this library is intended for inclusion in end user
products. You may not publish or otherwise expose the licensed source code outside of your organization
whatsoever. You may modify the source code as required for your own software products but the code may

2D Barcode FMX Components User Manual

112

only be used to produce compiled software. Software built incorporating our licensed source code must not
allow programmatic access to the software components or in any way compete with our software products.

Limitations on Reverse Engineering, Decompilation, and Disassembly.

You may not reverse engineer, decompile, or disassemble the SOFTWARE PRODUCT, except and only to
the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.

Separation of Components.

The SOFTWARE PRODUCT is licensed as a single product. Its components parts may not be separated
for use on more than one computer.

Software Transfer.

You may permanently transfer all of your rights under this EULA, provided the recipient agrees to the terms
of this EULA.

Termination.

Without prejudice to any other rights, the Author of this Software may terminate this EULA if you fail to
comply with the terms and conditions of this EULA. In such event, you must destroy all copies of the
SOFTWARE PRODUCT and all of its components parts.

Distribution.

The SOFTWARE PRODUCT may not be sold or be included in a product or package which intends to
receive benefits through the inclusion of the SOFTWARE PRODUCT. The registered SOFTWARE
PRODUCT may not be included in any free or non-profit packages or products.

3. COPYRIGHT.

All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images,
photographs, animations, video, audio, music, text, and "applets" incorporated into the SOFTWARE PRODUCT),
the accompanying printed materials, and any copies of the SOFTWARE PRODUCT are owned by the Author of
this Software. The SOFTWARE PRODUCT is protected by copyright laws and international treaty provisions.
Therefore, you must treat the SOFTWARE PRODUCT like any other copyrighted material except that you may
install the SOFTWARE PRODUCT on a single computer provided you keep the original solely for backup or
archival purposes.

MISCELLANEOUS

Should you have any questions concerning this EULA, or if you desire to contact the author of this Software for any reason,
please contact him at the email address mentioned at the bottom of this EULA.

LIMITED WARRANTY

1. NO WARRANTIES.

The Author of this Software expressly disclaims any warranty for the SOFTWARE PRODUCT. The SOFTWARE
PRODUCT and any related documentation is provided "as is" without warranty of any kind, either express or
implied, including, without limitation, the implied warranties or merchantability, fitness for a particular purpose, or
non-infringement. The entire risk arising out of use or performance of the SOFTWARE PRODUCT remains with
you.

2. NO LIABILITY FOR DAMAGES.

In no event shall the author of this Software be liable for any damages whatsoever (including, without limitation,

2D Barcode FMX Components User Manual

113

damages for loss of business profits, business interruption, loss of business information, or any other pecuniary
loss) arising out of the use of or inability to use this product, even if the Author of this Software has been advised of
the possibility of such damages. Because some states/jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation may not apply to you.

CONTACT US

Please sent email to the sales@han-soft.com email address.

2D Barcode FMX Components User Manual

114

mailto:sales@han-soft.com

Annex A. Properties

A.1 TBarcodeFmx2D

A.1.1 AllowEscape

Specifies whether to allow users to insert the escape sequences to barcode text, in order to place the function characters
and additional control information.

Syntax:

property AllowEscape: Boolean;

Description:

The property specifies whether to allow users to insert the escape sequences to barcode text, in order to place the
function characters and additional control information. An escape sequence is a series of characters used to place the
function character and special character, or the control information.

Escape sequences use an escape character "\" to change the meaning of the characters which follow it. For example:

ABCDEFG\pHIJKLMN

Some escape sequences may be followed by a parameters list, all parameters are comma delimited, and must be
enclosed by square brackets. For example:

\s[1, 2]ABCDEFGHIJKLMN

The escape sequences definition is different for every barcode symbology component, please read the "Escape
sequences" section in the article of every barcode symbology component.

A.1.2 AllowKanjiMode
(TBarcodeFmx2D_MicroQRCode)

Specifies whether to allow the Kanji mode to be used when encoding the barcode data into a Micro QR Code symbol.

Syntax:

property AllowKanjiMode: Boolean;

Description:

2D Barcode FMX Components User Manual

115

Micro QR Code symbology has four encoding modes as Numeric mode, Alphanumeric mode, Kanji mode, and Byte
mode respectively in decreasing order of encoding density. The Kanji mode can encode the Kanji characters more
effectively. The property specifies whether to allow the Kanji mode to be used when encoding the barcode data into a
Micro QR Code symbol.

If the property is set to true, the component will automatically select the encoding mode between Kanji mode and Byte
mode when the Kanji characters are encountered, in order to minimize the symbol size. Otherwise, all Kanji characters are
always encoded in Byte mode.

See also the "Encoding modes" section in the "TBarcodeFmx2D_MicroQRCode" article.

A.1.3 AllowKanjiMode
(TBarcodeFmx2D_QRCode)

Specifies whether to allow the Kanji mode to be used when encoding the barcode data into a QR Code symbol.

Syntax:

property AllowKanjiMode: Boolean;

Description:

QR Code symbology has four encoding modes as Numeric mode, Alphanumeric mode, Kanji mode, and Byte mode
respectively in decreasing order of encoding density. The Kanji mode can encode the Kanji characters more effectively.
The property specifies whether to allow the Kanji mode to be used when encoding the barcode data into a QR Code
symbol.

If the property is set to true, the component will automatically select the encoding mode between Kanji mode and Byte
mode when the Kanji characters are encountered, in order to minimize the symbol size. Otherwise, all Kanji characters are
always encoded in Byte mode.

See also the "Encoding modes" section in the "TBarcodeFmx2D_QRCode" article.

A.1.4 AutoCheckDigit
(TBarcodeFmx2D_RSS14, TBarcodeFmx2D_RSSLimited)

Specifies whether the check digit should be automatically appended to the barcode symbol.

Syntax:

property AutoCheckDigit: Boolean;

Description:

The RSS-14 and the RSS Limited barcode symbologies encode the GS1 14-digit EAN.UCC item identification number
(Global Trade Item Numbers, GTINs) in a symbol, its last digit represents the check digit. It is a form of redundancy check
used for error detection. It consists of a single numeric character computed from the other character in the EAN.UCC item

2D Barcode FMX Components User Manual

116

identification number.

The property specifies whether the check digit should be automatically appended to the barcode symbol.

If the AutoCheckDigit property is set to false, the check digit shall be included in the barcode text, so the length of barcode
text shall is 14 numeric characters, and the last numeric character in the barcode text is the check digit.

If the AutoCheckDigit property is set to true, the check digit will be appended automatically by the component, so the
length of barcode text shall is 13 numeric characters, and the check digit isn't required in the barcode text.

Note, the leading Application Identifier (01) is implied and is not encoded in the symbol. so it isn't required in the barcode
text.

See also the "Check digit" section in the "TBarcodeFmx2D_RSS14" and "TBarcodeFmx2D_RSSLimited" articles.

A.1.5 AutoMode
(TBarcodeFmx2D_MaxiCode)

Specifies whether to automatically select the mode for a MaxiCode barcode symbol.

Syntax:

property AutoMode: Boolean;

Description:

The property specifies whether to automatically select the mode for a MaxiCode barcode symbol, depending on the
barcode text and the Mode property value.

If the property is set to true, the TBarcodeFmx2D_MaxiCode component will automatically select the suitable mode
depending on the barcode text and the value of Mode property:

If the Mode property is set to mode 2 or 3, the factual mode will be selected between mode 2 and 3, depending on
the postal code field in the barcode text.

If the Mode property is set to mode 4, the factual mode will be selected between mode 4 and 5, depending on the
length of barcode text. If the length of barcode text is so short that can be encoded by using mode 5, the mode 5 will
be used in order to employ enhanced error correction, otherwise the mode 4 will be used in order to accommodate
more barcode text.

If the Mode property is set to mode 5, the mode 5 will be selected always, in order to insure high level of enhanced
error correction.

If the Mode property is set to mode 6, the mode 6 will be selected always, in order to encodes a message used to
program the reader system.

In this case, you can use the CurrentMode property to get the factual mode.

If the property is set to false, the mode will be specified by the Mode property. The value of CurrentMode property is
always equal to the Mode property value.

See also the "Modes" sections in the "TBarcodeFmx2D_MaxiCode" article.

2D Barcode FMX Components User Manual

117

A.1.6 Barcode

Specifies the barcode text in string format.

Syntax:

property Barcode: string;

Description:

Specifies the barcode text to encode it into the barcode symbol. The OnChange event will occur when the property value is
changed. The OnInvalidChar event will occur if there is any invalid character in the Barcode property value, and the
OnInvalidLength event will occur if the length of the Barcode property value is invalid.

The property is of type string. It is in fact a UnicodeString. By default, the unicode string will be converted to an UTF-8
bytes sequence (the BOM isn't included), then be encoded into the barcode symbol. If you want to use other encoding
scheme (for example the ANSI, UTF-16), please convert it in the OnEncode event handle, or specify the converted bytes
sequence in the Data property.

If you want to encode a block of binary (bytes) data, please use the Data property, it is of type TBytes (array of bytes).

For the TBarcodeFmx2D_RSS14 and the TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit is
set to true, the check digit doesn't need to be entered in the here, otherwise the check digit can be specified by you in
here.

A.1.7 BarcodeHeight

Specifies the distance between the top and bottom of a barcode symbol in pixels.

Syntax:

property BarcodeHeight: Single;

Description:

Specifies the distance between the top and bottom of a barcode symbol in pixels. If the quiet zones are drawn (the
ShowQuietZone property is set to true), the top quiet zone and the bottom quiet zone are included. See diagram (the
SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

118

The property is set using the following formula:

When the property Stretch is set to false:

The BarcodeHeight property will be ignored, and the height of barcode symbol will be calculated based on the
Module property value.

You can get the height value by using the Size method.

When the property Stretch is set to true:

If the BarcodeHeight property value is equal to zero:

When the Orientation property is set to "boLeftRight" or "boRightLeft", the TopMargin property value will be
subtracted from the height of the TImage control that's specified by the Image property, then the result will be
used as the final barcode height, the barcode symbol will be reduced/stretched to fit this final height value.
See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

When the Orientation property is set to "boTopBottom" or "boBottomTop", the LeftMargin property value will
be subtracted from the width of the TImage control that's specified by the Image property, then the result will
be used as the final barcode height, the barcode symbol will be reduced/stretched to fit this final height value.
See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

If the BarcodeHeight property value is greater than zero:

The barcode symbol will be reduced/stretched to fit this height value. See diagram (the SpaceColor property
value is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

119

If the BarcodeHeight property value is less than zero:

When the Orientation property is set to "boLeftRight" or "boRightLeft", the TopMargin property value and the
absolute value of the negative height will be subtracted from the height of the TImage control that's specified
by the Image property, then the result will be used as the final barcode height, the barcode symbol will be
reduced/stretched to fit this final height value (it specifies the bottom margin of the barcode symbol, -1
denotes the bottom margin is 1, -2 denotes the bottom margin is 2, ...). See diagram (the SpaceColor
property value is set to claSilver in order to accentuate the quiet zones):

When the Orientation property is set to "boTopBottom" or "boBottomTop", the LeftMargin property value and
the absolute value of the negative height will be subtracted from the width of the TImage control that's
specified by the Image property, then the result will be used as the final barcode height, the barcode symbol
will be reduced/stretched to fit this final height value (it specifies the right margin of the barcode symbol, -1
denotes the right margin is 1, -2 denotes the right margin is 2, ...). See diagram (the SpaceColor property
value is set to claSilver in order to accentuate the quiet zones):

A.1.8 BarcodeWidth

Specifies the distance between the beginning and end of a barcode symbol in pixels.

Syntax:

property BarcodeWidth: Single;

Description:

Specifies the distance between the beginning and end of a barcode symbol in pixels. If the quiet zones are drawn (the
ShowQuietZone property is set to true), the leading quiet zone and the trailing quiet zone are included. See diagram (the
SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

120

The property is set using the following formula:

When the property Stretch is set to false:

The BarcodeWidth property will be ignored, and the width of barcode symbol will be calculated based on the
Module property value.

You can get the width value by using the Size method.

When the property Stretch is set to true:

If the property value is equal to zero:

When the Orientation property is set to "boLeftRight" or "boRightLeft", the LeftMargin property value will be
subtracted from the width of the TImage control that's specified by the Image property, then the result will be
used as the final barcode width, the barcode symbol will be reduced/stretched to fit this final width value. See
diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

When the Orientation property is set to "boTopBottom" or "boBottomTop", the TopMargin property value will
be subtracted from the height of the TImage control that's specified by the Image property, then the result will
be used as the final barcode width, the barcode symbol will be reduced/stretched to fit this final width value.
See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

If the property value is greater than zero:

The barcode symbol will be reduced/stretched to fit this width value. See diagram (the SpaceColor property
value is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

121

If the property value is less than zero:

When the Orientation property is set to "boLeftRight" or "boRightLeft", the LeftMargin property value and the
absolute value of the negative width will be subtracted from the width of the TImage control that's specified by
the Image property, then the result will be used as the final barcode width, the barcode symbol will be
reduced/stretched to fit this final width value (it specifies the right margin of the barcode symbol, -1 denotes
the right margin is 1, -2 denotes the right margin is 2, ...). See diagram (the SpaceColor property value is set
to claSilver in order to accentuate the quiet zones):

When the Orientation property is set to "boTopBottom" or "boBottomTop", the TopMargin property value and
the absolute value of the negative width will be subtracted from the height of the TImage control that's
specified by the Image property, then the result will be used as the final barcode width, the barcode symbol
will be reduced/stretched to fit this final width value (it specifies the bottom margin of the barcode symbol, -1
denotes the bottom margin is 1, -2 denotes the bottom margin is 2, ...). See diagram (the SpaceColor
property value is set to claSilver in order to accentuate the quiet zones):

Note:

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are included
always, even if the ShowQuietZone property is set to false. See diagram (the SpaceColor property value is set to claSilver
in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

122

A.1.9 BarColor

Specifies the color for all bars or dark modules in the barcode symbol, By default, it's claBlack.

Syntax:

property BarColor: TAlphaColor;

Description:

For the Matrix 2D barcode symbologies, including TBarcodeFmx2D_AztecCode, TBarcodeFmx2D_AztecRunes,
TBarcodeFmx2D_DataMatrix, TBarcodeFmx2D_DataMatrixECC200, TBarcodeFmx2D_HanXinCode,
TBarcodeFmx2D_GridMatrix, TBarcodeFmx2D_CompactMatrix, TBarcodeFmx2D_QRCode,
TBarcodeFmx2D_MaxiCode, and TBarcodeFmx2D_MicroQRCode, the property specifies the color of every dark module
in matrix symbol if the Inversed property is set to false. Otherwise, it specifies the color of every light module (background
color). The module is single cell in the matrix symbol used to encode one bit data, nominally a suqare shape, in MaxiCode
symbology, it's a regular hexagonal shape.

F or Stacked 2D barcode symbologies and Linear 1D barcode symbologies, including TBarcodeFmx2D_Code16K,
TBarcodeFmx2D_PDF417, TBarcodeFmx2D_MicroPDF417, TBarcodeFmx2D_RSS14,
TBarcodeFmx2D_RSSLimited, and TBarcodeFmx2D_RSSExpanded, the property specifies the color for all bars in the
barcode symbol if the Inversed property is set to false. Otherwise, it specifies the color for all spaces (background color).

Also, when the leading quiet zone, trailing quiet zone, top quiet zone, and bottom quiet zone are drawn (the
ShowQuietZone property is set to true), if the Inversed property is set to true, the color specified by this BarColor property
will be used to draw them. Otherwise, the color specified by the SpaceColor property will be used.

A.1.10 BottomQuietZone

Specifies the vertical height of the bottom quiet zone in modules.

Syntax:

property BottomQuietZone: Integer;

Description:

Specifies the vertical height of the bottom quiet zone in modules. The quiet zone is drawn using the color specified by the
SpaceColor property if the Inversed property is set to false. Otherwise, it's drawn using the color specified by the BarColor

2D Barcode FMX Components User Manual

123

property. See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

This property is useful only when the ShowQuietZone property value is set to true.

A.1.11 BytesAlwaysBackToUpper
(TBarcodeFmx2D_AztecCode)

The property is an advanced feature which allows low level control over data encoding for an Aztec Code symbol.

Syntax:

property BytesAlwaysBackToUpper: Boolean;

Description:

In the Aztec Code symbology specification, at the end of bytes mode, the encoding mode returns to the mode from which
bytes mode was shifted into. For some readers, the encoding mode always returns to the upper mode, change the
property to true in order to ensure barcode symbols can be read by these readers.

Please use your reader to read the following symbol, if the output text is "~~~a9a9a9TTT", please set the property to true,
if the output text is "~~~a9a9a9\\\", please set the property to false.

A.1.12 Compact
(TBarcodeFmx2D_PDF417)

Specifies whether the PDF417 barcode symbol is generated in Compact PDF417 format.

Syntax:

property Compact: Boolean;

Description:

In an environment where space considerations are a primary concern and symbol damage is unlikely (e.g. an office), the
right row indicators of a PDF417 symbol may be omitted and the stop pattern may be reduced to one module width bar.

2D Barcode FMX Components User Manual

124

This reduction version is called Compact PDF417, which is fully decoder compatible with standard PDF417. The property
specifiies whether the PDF417 barcode symbol is generated in Compact PDF417 format. See diagram:

Note, the Compact PDF417 was referred as Truncated PDF417 in previous standard.

See also the "Compact PDF417" section in the "TBarcodeFmx2D_PDF417" article.

A.1.13 CurrentColumns
(TBarcodeFmx2D_PDF417)

Contains the factual number of columns of a PDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxPDF417Custom unit }
TPDF417_Columns = 1..30;

property CurrentColumns: TPDF417_Columns;

Description:

The minimum number of columns (specified by the MinColumns property) and the minimum number of rows (specified by
the MinRows property) indicate the minimum symbol size for a PDF417 barcode symbol. The maximum number of
columns (specified by the MaxColumns property) and the maximum number of rows (specified by the MaxRows property)
indicate the maximum symbol size for the PDF417 barcode symbol. Based on the stretch order (specified by the
StretchOrder property), the smallest symbol size that accommodates the barcode text will be automatically selected
between the minimum symbol size and the maximum symbol size. Read the property to retrieve the factual number of
columns of the PDF417 barcode symbol.

The property can be one of values from 1 to 30, denotations the factual number of columns of a PDF417 2D barcode
symbol. They are defined in the pfmxPDF417Custom unit.

The property is read only.

See also the "Symbol size" section in the "TBarcodeFmx2D_PDF417" article.

A.1.14 CurrentECCLevel
(TBarcodeFmx2D_CompactMatrix)

Contains the factual error correction code level of a Compact Matrix barcode symbol.

Syntax:

2D Barcode FMX Components User Manual

125

type
{ Defined in the pfmxCompactMatrix unit }
TCompactMatrix_EccLevel = 1..8;

property CurrentECCLevel: TCompactMatrix_EccLevel;

Description:

The property always contains the factual error correction code level of a Compact Matrix barcode symbol. It can be one of
values from 1 to 8, corresponding to the ECC levels from 1 to 8.

If the ECCLevelUpgrade property is set to true, the remaining data capacity of a Compact Matrix barcode symbol will be
used to automatically upgrade the error correction code level, the highest error correction code level that can be
accommodated by current symbol size will by used for creating more robust symbols. Read the property to retrieve the
factual error correction code level of the Compact Matrix barcode symbol.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of this property is always equal to the value of the ECCLevel property.

The property is read only.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_CompactMatrix" article.

A.1.15 CurrentECCLevel
(TBarcodeFmx2D_DataMatrix)

Contains the factual error correction code level of a Data Matrix (ECC 000 - 140) barcode symbol.

Syntax:

type
{ Defined in the pfmxDataMatrix unit }
TDataMatrix_ECCLevel = (dmECC000, dmECC050, dmECC080, dmECC100, dmECC140);

property CurrentECCLevel: TDataMatrix_ECCLevel;

Description:

The property always contains the factual error correction code level of a Data Matrix (ECC 000 - 140) barcode symbol. It
can be one of five values dmECC000, dmECC050, dmECC080, dmECC100, and dmECC140, corresponding to error
correction code level ECC 000, ECC 050, ECC 080, ECC 100, and ECC 140. They are defined in the pfmxDataMatrix
unit.

If the ECCLevelUpgrade property is set to true, the remaining data capacity of a Data Matrix (ECC 000 - 140) barcode
symbol will be used to automatically upgrade the error correction code level, the highest error correction code level that
can be accommodated by current symbol size will by used for creating more robust symbols. Read the property to retrieve
the factual error correction code level of the Data Matrix (ECC 000 - 140) barcode symbol.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of this property is always equal to the value of the ECCLevel property.

The property is read only.

2D Barcode FMX Components User Manual

126

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_DataMatrix" article.

A.1.16 CurrentECCLevel
(TBarcodeFmx2D_GridMatrix)

Contains the factual error correction code level of a Grid Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxGridMatrix unit }
TGridMatrix_EccLevel = (elLevel_Recommend, elLevel_1, elLevel_2, elLevel_3,
elLevel_4, elLevel_5, elLevel_LowestRecommend);

property CurrentECCLevel: TGridMatrix_EccLevel;

Description:

The Grid Matrix symbology offers five levels of error correction, from 1 to 5 respectively in increasing order of recovery
capacity.

The property always contains the factual error correction code level of a Grid Matrix barcode symbol. It can be one of these
values (defined in the pfmxGridMatrix unit):

elLevel_1: The ECC level of a Grid Matrix barcode symbol is 1. The percentage of total capacity for ECC data is
10%.

elLevel_2: The ECC level of a Grid Matrix barcode symbol is 2. The percentage of total capacity for ECC data is
20%.

elLevel_3: The ECC level of a Grid Matrix barcode symbol is 3. The percentage of total capacity for ECC data is
30%.

elLevel_4: The ECC level of a Grid Matrix barcode symbol is 4. The percentage of total capacity for ECC data is
40%.

elLevel_5: The ECC level of a Grid Matrix barcode symbol is 5. The percentage of total capacity for ECC data is
50%.

If the ECCLevelUpgrade property is set to true, the remaining data capacity of a Grid Matrix barcode symbol will be used
to automatically upgrade the error correction code level, the highest error correction code level that can be accommodated
by current symbol size will by used for creating more robust symbols. Read the property to retrieve the factual error
correction code level of the Grid Matrix barcode symbol.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of this property is always equal to the value of the ECCLevel property.

The property is read only.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_GridMatrix" article.

2D Barcode FMX Components User Manual

127

A.1.17 CurrentECCLevel
(TBarcodeFmx2D_HanXinCode)

Contains the factual error correction code level of a Han Xin Code barcode symbol.

Syntax:

type
{ Defined in the pfmxHanXinCode unit }
THanXinCode_EccLevel = (elLevel_1, elLevel_2, elLevel_3, elLevel_4);

property CurrentECCLevel: THanXinCode_EccLevel;

Description:

The Han Xin Code symbology offers four levels of error correction, from L1 to L4 respectively in increasing order of
recovery capacity. The property always contains the factual error correction code level of a Han Xin Code barcode symbol.
It can be one of these values (defined in the pfmxHanXinCode unit):

elLevel_1: The ECC level of a Han Xin Code barcode symbol is L1. The recevory capacities (approx.) is 8%.

elLevel_2: The ECC level of a Han Xin Code barcode symbol is L2. The recevory capacities (approx.) is 15%.

elLevel_3: The ECC level of a Han Xin Code barcode symbol is L3. The recevory capacities (approx.) is 23%.

elLevel_4: The ECC level of a Han Xin Code barcode symbol is L4. The recevory capacities (approx.) is 30%.

If the ECCLevelUpgrade property is set to true, the remaining data capacity of a Han Xin Code barcode symbol will be
used to automatically upgrade the error correction code level, the highest error correction code level that can be
accommodated by current symbol size will by used for creating more robust symbols. Read the property to retrieve the
factual error correction code level of the Han Xin Code barcode symbol.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of this property is always equal to the value of the ECCLevel property.

The property is read only.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_HanXinCode" article.

A.1.18 CurrentECCLevel
(TBarcodeFmx2D_MicroQRCode)

Contains the factual error correction code level of a Micro QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxMicroQRCode unit }
TMicroQRCode_ECCLevel = (elLowest, elMedium, elQuality);

property CurrentECCLevel: TMicroQRCode_ECCLevel;

Description:

2D Barcode FMX Components User Manual

128

The property always contains the factual error correction code level of a Micro QR Code barcode symbol. It can be one of
these values (defined in the pfmxMicroQRCode unit):

elLowest: The ECC level of a Micro QR Code barcode symbol is L. The capability of recovery from the amounts of
damage is 7%.

elMedium: The ECC level of a Micro QR Code barcode symbol is M. The capability of recovery from the amounts
of damage is 15%.

elQuality: The ECC level of a Micro QR Code barcode symbol is Q. The capability of recovery from the amounts of
damage is 25%.

If the ECCLevelUpgrade property is set to true, the remaining data capacity of a Micro QR Code barcode symbol will be
used to automatically upgrade the error correction code level, the highest error correction code level that can be
accommodated by current symbol size will by used for creating more robust symbols. Read the property to retrieve the
factual error correction code level of the Micro QR Code barcode symbol.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of this property is always equal to the value of the ECCLevel property.

The property is read only.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_MicroQRCode" article.

A.1.19 CurrentECCLevel
(TBarcodeFmx2D_PDF417)

Contains the factual error correction code level of a PDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxPDF417Custom unit }
TPDF417_EccLevel = (elEcc_0, elEcc_1, elEcc_2, elEcc_3, elEcc_4, elEcc_5,
elEcc_6, elEcc_7, elEcc_8, elEcc_Auto);

property CurrentECCLevel: TPDF417_EccLevel;

Description:

The property always contains the factual error correction code level of a PDF417 barcode symbol. It can be one of values
from elEcc_0 to elEcc_8, corresponding to error correction code level from ECC 0 to ECC 8. They are defined in the
pfmxPDF417Custom unit.

If the ECCLevelUpgrade property is set to true, the remaining data capacity of a PDF417 barcode symbol will be used to
automatically upgrade the error correction code level. The highest error correction code level that can be accommodated
by current symbol size will by used for creating more robust symbols. Read the property to retrieve the factual error
correction code level.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. If the ECCLevel property is set to one of values from elECC_0 to elECC_8, the value of this property is
always equal to the value of the ECCLevel property. If the ECCLevel property is set to elEcc_Auto, the value of this
property is the recommended minimum ECC level, depending on the length of barcode text.

2D Barcode FMX Components User Manual

129

The property is read only.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_PDF417" article.

A.1.20 CurrentECCLevel
(TBarcodeFmx2D_QRCode)

Contains the factual error correction code level of a QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxQRCode unit }
TQRCode_ECCLevel = (elLowest, elMedium, elQuality, elHighest);

property CurrentECCLevel: TQRCode_ECCLevel;

Description:

The property always contains the factual error correction code level of a QR Code barcode symbol. It can be one of these
values (defined in the pfmxQRCode unit):

elLowest: The ECC level of a QR Code barcode symbol is L. The capability of recovery from the amounts of
damage is 7%.

elMedium: The ECC level of a QR Code barcode symbol is M. The capability of recovery from the amounts of
damage is 15%.

elQuality: The ECC level of a QR Code barcode symbol is Q. The capability of recovery from the amounts of
damage is 25%.

elHighest: The ECC level of a QR Code barcode symbol is H. The capability of recovery from the amounts of
damage is 30%.

If the ECCLevelUpgrade property is set to true, the remaining data capacity of a QR Code barcode symbol will be used to
automatically upgrade the error correction code level, the highest error correction code level that can be accommodated
by current symbol size will by used for creating more robust symbols. Read the property to retrieve the factual error
correction code level of the QR Code barcode symbol.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of this property is always equal to the value of the ECCLevel property.

The property is read only.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_QRCode" article.

A.1.21 CurrentEncodeMode
(TBarcodeFmx2D_DataMatrix)

2D Barcode FMX Components User Manual

130

Contains the factual data encoding mode of a Data Matrix (ECC 000 - 140) barcode symbol.

Syntax:

type
{ Defined in the pfmxDataMatrix unit }
TDataMatrix_EncodeMode = (emAuto, emNumeric, emAlpha, emPunctuation,
emAlphanumeric, emASCII, emBinary);

property CurrentEncodeMode: TDataMatrix_EncodeMode;

Description:

Read the property to retrieve the factual data encoding mode of a Data Matrix (ECC 000 - 140) barcode symbol. It can be
one of these values: emNumeric, emAlpha, emPunctuation, emAlphanumeric, emASCII, and emBinary, corresponding to
the Numeric (Base 11), Alpha (Base 27), Punctuation (Base 37), Alphanumeric (Base 41), ASCII, and Binary encoding
modes. They are defined in the pfmxDataMatrix unit.

If the EncodeMode property is set to emAuto, the data encoding mode will be selected automatically, depending on the
barcode text in order to minimize the symbol size. It can be one of these value: emNumeric, emAlpha, emPunctuation,
emAlphanumeric, emASCII, and emBinary. You can read this property to get the factual data encoding mode.

If the EncodeMode property isn't set to emAuto, the value of this property is equal to the value of EncodeMode property.

The property is read only.

See also the "Encoding modes" section in the "TBarcodeFmx2D_DataMatrix" article.

A.1.22 CurrentMode
(TBarcodeFmx2D_Code16K)

Contains the factual initial mode of a Code 16K barcode symbol.

Syntax:

type
{ Defined in the pfmxCode16K unit }
TCode16K_EncodeMode = (emAuto, emModeA, emModeB, emModeC, emModeB_FNC1,
emModeC_FNC1, emModeC_Shift1B, emModeC_Shift2B, emMode_Extended);

property CurrentMode: TCode16K_EncodeMode;

Description:

Read the property to retrieve the factual initial mode of a Code 16K barcode symbol. It can be one of these values:
emModeA, emModeB, emModeC, emModeB_FNC1, emModeC_FNC1, emModeC_Shift1B, emModeC_Shift2B, and
emMode_Extended, corresponding to the initial modes 0 to 6, and extended data length mode. They are defined in the
pfmxCode16K unit.

If the InitialMode property is set to emAuto, the initial mode will be selected automatically, depending on the barcode text
in order to minimize the symbol size. It can be one of these value: emModeA, emModeB, emModeC, emModeB_FNC1,
emModeC_FNC1, emModeC_Shift1B, or emModeC_Shift2B. You can read this property to get the factual initial mode.

2D Barcode FMX Components User Manual

131

If the InitialMode property isn't set to emAuto, the value of this property is equal to the value of InitialMode property.

The property is read only.

See also the "Initial modes" section in the "TBarcodeFmx2D_Code16K" article.

A.1.23 CurrentMode
(TBarcodeFmx2D_MaxiCode)

Contains the factual mode of a MaxiCode barcode symbol.

Syntax:

type
{ Defined in the pfmxMaxiCode unit }
TMaxiCode_Mode = 2..6;

property CurrentMode: TMaxiCode_Mode;

Description:

Read the property to retrieve the factual mode of a MaxiCode barcode symbol. It can be one of values from 2 to 6,
denotations the factual mode of a MaxiCode 2D barcode symbol. They are defined in the pfmxMaxiCode unit.

If the AutoMode property is set to Ture, the mode of MaxiCode symbol will be selected automatically, depending on the
barcode text and the value of Mode property. You can read this property to get the factual mode.

If the AutoMode property is set to false, the value of this property is equal to the value of Mode property.

The property is read only.

See also the "Modes" section in the "TBarcodeFmx2D_MaxiCode" article.

A.1.24 CurrentRows
(TBarcodeFmx2D_Code16K)

Contains the factual number of stacked rows of a Code 16K barcode symbol.

Syntax:

type
{ Defined in the pfmxCode16K unit }
TCode16K_Rows = 2..16;

property CurrentRows: TCode16K_Rows;

Description:

The smallest number of stacked rows that accommodates the barcode text will be automatically selected between the

2D Barcode FMX Components User Manual

132

minimum number of stacked rows (specified by the MinRows property) and the maximum number of stacked rows
(specified by the MaxRows property). Read the property to retrieve the factual number of stacked rows of a Code 16K
barcode symbol.

The property can be one of values from 2 to 16, denotations the factual number of rows. They are defined in the
pfmxCode16K unit.

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_Code16K" article.

A.1.25 CurrentRows
(TBarcodeFmx2D_PDF417)

Contains the factual number of stacked rows of a PDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxPDF417Custom unit }
TPDF417_Rows = 3..90;

property CurrentRows: TPDF417_Rows;

Description:

The minimum number of stacked rows (specified by the MinRows property) and the minimum number of columns
(specified by the MinColumns property) indicate the minimum symbol size for a PDF417 barcode symbol. The maximum
number of stacked rows (specified by the MaxRows property) and the maximum number of columns (specified by the
MaxColumns property) indicate the maximum symbol size for the PDF417 barcode symbol. Based on the stretch order
(specified by the StretchOrder property), the smallest symbol size that accommodates the barcode text will be
automatically selected between the minimum symbol size and the maximum symbol size. Read the property to retrieve the
factual number of stacked rows of the PDF417 barcode symbol.

The property can be one of values from 3 to 90, denotations the factual number of rows. They are defined in the
pfmxPDF417Custom unit.

The property is read only.

See also the "Symbol size" section in the "TBarcodeFmx2D_PDF417" article.

A.1.26 CurrentSegments
(TBarcodeFmx2D_CompactMatrix)

Contains the factual number of segments of a Compact Matrix barcode symbol.

Syntax:

2D Barcode FMX Components User Manual

133

type
{ Defined in the pfmxCompactMatrix unit }
TCompactMatrix_Segments = 1..32;

property CurrentSegments: TCompactMatrix_Segments;

Description:

In horizontal orientation, each Compact Matrix symbol consists of an array of segments with a minimum of 1 segment
(maximum 32 segments).

The minimum version (specified by the MinVersion property) and the minimum number of segments (specified by the
MinSegments property) indicate the minimum symbol size for a Compact Matrix barcode symbol. The maximum version
(specified by the MaxVersion property) and the maximum number of segments (specified by the MaxSegments property)
indicate the maximum symbol size for the Compact Matrix barcode symbol. Based on the stretch order (specified by the
StretchOrder property), the smallest symbol size that accommodates the barcode text will be automatically selected
between the minimum symbol size and the maximum symbol size. Read the property to retrieve the factual number of
segments of the Compact Matrix barcode symbol.

The property can be one of values from 1 to 32, denotations the factual number of segments of a Compact Matrix 2D
barcode symbol. They are defined in the pfmxCompactMatrix unit.

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_CompactMatrix" article.

A.1.27 CurrentSize
(TBarcodeFmx2D_AztecCode)

Contains the factual symbol size of an Aztec Code barcode symbol.

Syntax:

type
{ Defined in the pfmxAztecCode unit }
TAztecCode_Size = (azSize_15Compact, azSize_19, azSize_19Compact, azSize_23,
azSize_23Compact, azSize_27, azSize_27Compact, azSize_31, azSize_37, azSize_41,
azSize_45, azSize_49, azSize_53, azSize_57, azSize_61, azSize_67, azSize_71,
azSize_75, azSize_79, azSize_83, azSize_87, azSize_91, azSize_95, azSize_101,
azSize_105, azSize_109, azSize_113, azSize_117, azSize_121, azSize_125,
azSize_131, azSize_135, azSize_139, azSize_143, azSize_147, azSize_151);

property CurrentSize: TAztecCode_Size;

Description:

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by the MinSize property and the maximum symbol size specified by the MaxSize property. Read the
property to retrieve the factual symbol size of an Aztec Code barcode symbol.

The property can be one of values from azSize_15Compact to azSize_151, denotations the factual format, number of
rows and columns in current symbol. For example, the symbol size value azSize_19Compact denotations the Aztec Code

2D Barcode FMX Components User Manual

134

symbol size is 19 rows by 19 columns, in compact format. These symbol size values are defined in the pfmxAztecCode
unit.

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_AztecCode" article.

A.1.28 CurrentSize
(TBarcodeFmx2D_DataMatrix)

Contains the factual symbol size of a Data Matrix (ECC 000 - 140) barcode symbol.

Syntax:

type
{ Defined in the pfmxDataMatrix unit }
TDataMatrix_Size = (dmSize_09_09, dmSize_11_11, dmSize_13_13, dmSize_15_15,
dmSize_17_17, dmSize_19_19, dmSize_21_21, dmSize_23_23, dmSize_25_25,
dmSize_27_27, dmSize_29_29, dmSize_31_31, dmSize_33_33, dmSize_35_35,
dmSize_37_37, dmSize_39_39, dmSize_41_41, dmSize_43_43, dmSize_45_45,
dmSize_47_47, dmSize_49_49);

property CurrentSize: TDataMatrix_Size;

Description:

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by the MinSize property and the maximum symbol size specified by the MaxSize property. Read the
property to retrieve the factual symbol size of a Data Matrix (ECC 000 - 140) barcode symbol.

The property can be one of values from dmSize_09_09 to dmSize_49_49, denotations the factual number of rows and
columns in current symbol. For example, the symbol size value dmSize_29_29 denotations the Data Matrix (ECC 000 -
140) symbol size is 29 rows by 29 columns. These symbol size values are defined in the pfmxDataMatrix unit.

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_DataMatrix" article.

A.1.29 CurrentSize
(TBarcodeFmx2D_DataMatrixECC200)

Contains the factual symbol size of a Data Matrix (ECC 200) barcode symbol.

Syntax:

type
{ Defined in the pfmxDataMatrixEcc200 unit }

2D Barcode FMX Components User Manual

135

TDataMatrixEcc200_Size = (dmSize_10_10, dmSize_12_12, dmSize_14_14,
dmSize_16_16, dmSize_18_18, dmSize_20_20, dmSize_22_22, dmSize_24_24,
dmSize_26_26, dmSize_32_32, dmSize_36_36, dmSize_40_40, dmSize_44_44,
dmSize_48_48, dmSize_52_52, dmSize_64_64, dmSize_72_72, dmSize_80_80,
dmSize_88_88, dmSize_96_96, dmSize_104_104, dmSize_120_120, dmSize_132_132,
dmSize_144_144, dmSize_8_18, dmSize_8_32, dmSize_12_26, dmSize_12_36,
dmSize_16_36, dmSize_16_48);

property CurrentSize: TDataMatrixEcc200_Size;

Description:

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by the MinSize property and the maximum symbol size specified by the MaxSize property. Read the
property to retrieve the factual symbol size of a Data Matrix (ECC 200) barcode symbol.

The property can be one of values from dmSize_10_10 to dmSize_16_48, denotations the factual number of rows and
columns in current symbol. For example, the symbol size value dmSize_8_18 denotations the Data Matrix (ECC 200)
symbol size is 8 rows by 18 columns. These symbol size values are defined in the pfmxDataMatrixEcc200 unit.

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_DataMatrixECC200" article.

A.1.30 CurrentSize
(TBarcodeFmx2D_MicroPDF417)

Contains the factual symbol size of an MicroPDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxMicroPDF417 unit }
TMicroPDF417_Size = (mpSize_1_11, mpSize_1_14, mpSize_1_17, mpSize_1_20,
mpSize_1_24, mpSize_1_28, mpSize_2_8, mpSize_2_11, mpSize_2_14, mpSize_2_17,
mpSize_2_20, mpSize_2_23, mpSize_2_26, mpSize_3_6, mpSize_3_8, mpSize_3_10,
mpSize_3_12, mpSize_3_15, mpSize_3_20, mpSize_3_26, mpSize_3_32, mpSize_3_38,
mpSize_3_44, mpSize_4_4, mpSize_4_6, mpSize_4_8, mpSize_4_10, mpSize_4_12,
mpSize_4_15, mpSize_4_20, mpSize_4_26, mpSize_4_32, mpSize_4_38, mpSize_4_44);

property CurrentSize: TMicroPDF417_Size;

Description:

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by the MinSize property and the maximum symbol size specified by the MaxSize property. Read the
property to retrieve the factual symbol size of an MicroPDF417 barcode symbol.

The property can be one of values from mpSize_1_11 to mpSize_4_44, denotations the factual number of columns and
rows in current symbol. For example, the symbol size value mpSize_3_12 denotations the MicroPDF417 symbol size is
12 stacked rows by 3 columns. These symbol size values are defined in the pfmxMicroPDF417 unit.

2D Barcode FMX Components User Manual

136

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_MicroPDF417" article.

A.1.31 CurrentVersion
(TBarcodeFmx2D_CompactMatrix)

Contains the factual version value of a Compact Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxCompactMatrix unit }
TCompactMatrix_Version = 1..32;

property CurrentVersion: TCompactMatrix_Version;

Description:

There are 32 vertical sizes of Compact Matrix symbol, referred to as version 1 to 32, in increasing order of symbol height
and data capacity.

The minimum version (specified by the MinVersion property) and the minimum number of segments (specified by the
MinSegments property) indicate the minimum symbol size for a Compact Matrix barcode symbol. The maximum version
(specified by the MaxVersion property) and the maximum number of segments (specified by the MaxSegments property)
indicate the maximum symbol size for the Compact Matrix barcode symbol. Based on the stretch order (specified by the
StretchOrder property), the smallest symbol size that accommodates the barcode text will be automatically selected
between the minimum symbol size and the maximum symbol size. Read the property to retrieve the factual version value of
the Compact Matrix barcode symbol.

The property can be one of values from 1 to 32, denotations the factual version value. They are defined in the
pfmxCompactMatrix unit.

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_CompactMatrix" article.

A.1.32 CurrentVersion
(TBarcodeFmx2D_GridMatrix)

Contains the factual symbol version (symbol size) of a Grid Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxGridMatrix unit }
TGridMatrix_Version = 1..13;

2D Barcode FMX Components User Manual

137

property CurrentVersion: TGridMatrix_Version;

Description:

There are thirteen sizes of Grid Matrix symbol, referred to as version 1 to 13, in increasing order of size and data capacity.

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the
minimum symbol version (symbol size) specified by the MinVersion property and the maximum symbol version (symbol
size) specified by the MaxVersion property. Read the property to retrieve the factual symbol version (symbol size) of a
Grid Matrix barcode symbol.

The property can be one of values from 1 to 13, denotations the factual version of a Grid Matrix 2D barcode symbol. They
are defined in the pfmxGridMatrix unit.

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_GridMatrix" article.

A.1.33 CurrentVersion
(TBarcodeFmx2D_HanXinCode)

Contains the factual symbol version (symbol size) of a Han Xin Code barcode symbol.

Syntax:

type
{ Defined in the pfmxHanXinCode unit }
THanXinCode_Version = 1..84;

property CurrentVersion: THanXinCode_Version;

Description:

There are eighty-four sizes of Han Xin Code symbols, referred to as version 1 to 84, in increasing order of size and data
capacity. The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected
between the minimum symbol version (symbol size) specified by the MinVersion property and the maximum symbol
version (symbol size) specified by the MaxVersion property. Read the property to retrieve the factual symbol version
(symbol size) of a Han Xin Code barcode symbol.

The property can be one of values from 1 to 84, denotations the factual version of a Han Xin Code 2D barcode symbol.
They are defined in the pfmxHanXinCode unit.

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_HanXinCode" article.

A.1.34 CurrentVersion
(TBarcodeFmx2D_MicroQRCode)

2D Barcode FMX Components User Manual

138

Contains the factual symbol version (symbol size) of a Micro QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxMicroQRCode unit }
TMicroQRCode_Version = 1..4;

property CurrentVersion: TMicroQRCode_Version;

Description:

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the
minimum symbol version (symbol size) specified by the MinVersion property and the maximum symbol version (symbol
size) specified by the MaxVersion property. Read the property to retrieve the factual symbol version (symbol size) of a
Micro QR Code barcode symbol.

The property can be one of values from 1 to 4, denotations the factual version of a Micro QR Code 2D barcode symbol.
They are defined in the pfmxMicroQRCode unit.

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_MicroQRCode" article.

A.1.35 CurrentVersion
(TBarcodeFmx2D_QRCode)

Contains the factual symbol version (symbol size) of a QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxQRCode unit }
TQRCode_Version = 1..40;

property CurrentVersion: TQRCode_Version;

Description:

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the
minimum symbol version (symbol size) specified by the MinVersion property and the maximum symbol version (symbol
size) specified by the MaxVersion property. Read the property to retrieve the factual symbol version (symbol size) of a QR
Code barcode symbol.

The property can be one of values from 1 to 40, denotations the factual version of a QR Code 2D barcode symbol. They
are defined in the pfmxQRCode unit.

The property is read only.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_QRCode" article.

2D Barcode FMX Components User Manual

139

A.1.36 Data

Specifies a block of binary (bytes) data to encode it into the barcode symbol.

Syntax:

property Data: TBytes;

Description:

You can use the property to specify a block of binary (bytes) data, and encode it into a barcode symbol. It's is of type
TBytes (array of bytes). The OnChange event will occur when the property value is changed. The OnInvalidDataChar event
will occur if there is any invalid byte value in the Data property value, and the OnInvalidDataLength event will occur if the
length of the Data property value is invalid.

The Barcode property of TBarcodeFmx2D component is of type string, it is in fact a UnicodeString. By default, the unicode
string will be converted to an UTF-8 bytes sequence (the BOM isn't included), then be encoded into the barcode symbol. If
you want to use other encoding scheme (for example the ANSI, UTF-16), please specify the converted bytes sequence in
the Data property, or convert it in the OnEncode event handle.

For the TBarcodeFmx2D_RSS14 and the TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit is
set to true, the check digit doesn't need to be included in the property value, otherwise the check digit can be specified by
you in it.

A.1.37 DefaultEncodeMode
(TBarcodeFmx2D_MicroPDF417)

Specifies the initial compaction mode for a MicroPDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxMicroPDF417 unit }
TMicroPDF417_EncodeMode = (emText, emByte, emNumeric, emNull);

property DefaultEncodeMode: TMicroPDF417_EncodeMode;

Description:

The property specifies the initial compaction mode for a MicroPDF417 barcode symbol. In the specification of
MicroPDF417, the initial compaction mode in effect at the start of each symbol shall always be Byte compaction mode,
but some readers use the Text compaction mode (Alpha sub-mode) as the initial compaction mode. The property should
be set to match your reader. If you don't known the initial compaction mode used by your reader, please set the property
value to emNull, or you can change the Options property to include the "poMicroPDF417Explicit901" value, in order to
explicitly insert a mode latch to Byte compaction mode into beginning of symbol data.

The property can be one of these values (defined in the pfmxMicroPDF417 unit).

emText: Indicates the initial compaction mode to Text compaction mode. You can use the DefaultTextEncodeMode
property to specify the Text compaction sub-mode.

emNumeric: Indicates the initial compaction mode to Numeric compaction mode.

2D Barcode FMX Components User Manual

140

emByte: Indicates the initial compaction mode to Byte compaction mode.

emNull: The appropriate initial compaction mode will be introduced by an explicit mode latch depending on the
barcode text.

See also the "Character set" section in the "TBarcodeFmx2D_MicroPDF417" article.

A.1.38 DefaultTextEncodeMode
(TBarcodeFmx2D_MicroPDF417)

Specifies the initial Text compaction sub-mode for a MicroPDF417 barcode symbol if its initial compaction mode is set to
Text compaction mode (emText).

Syntax:

type
{ Defined in the pfmxMicroPDF417 unit }
TMicroPDF417_TextEncodeMode = (tmAlpha, tmLower, tmMixed, tmPunct);

property DefaultTextEncodeMode: TMicroPDF417_TextEncodeMode;

Description:

In the specification of MicroPDF417, the initial compaction mode in effect at the start of each symbol shall always be Byte
compaction mode, but some readers use the Text compaction mode (Alpha sub-mode) as the initial compaction mode.
The property specifies the initial Text compaction sub-mode for a MicroPDF417 barcode symbol if its initial compaction
mode is set to Text compaction mode (the DefaultEncodeMode property is set to emText). It should be set to match your
reader.

The property can be one of these values (defined in the pfmxMicroPDF417 unit).

tmAlpha: Indicates the initial Text compaction sub-mode to Alpha sub-mode.

tmLower: Indicates the initial Text compaction sub-mode to Lower sub-mode.

tmMixed: Indicates the initial Text compaction sub-mode to Mixed sub-mode.

tmPunct: Indicates the initial Text compaction sub-mode to Punctuation sub-mode.

Note, the property is available only when the DefaultEncodeMode property is set to emText.

See also the "Character set" section in the "TBarcodeFmx2D_MicroPDF417" and the "DefaultEncodeMode" articles.

A.1.39 ECCCount
(TBarcodeFmx2D_AztecCode)

Specifies the additional error correction size (number of codewords) for an Aztec Code symbol.

Syntax:

2D Barcode FMX Components User Manual

141

property ECCCount: Word;

Description:

The property specifies the additional error correction size (number of codewords) for an Aztec Code symbol.

If the ECCLevel property is set to 0, the property specify the minimum error correction size (number of codewords) for an
Aztec Code symbol. Depending on message length, the symbology will typically have to add extra error correction
codewords above this minimum to fill out the symbol.

If the ECCLevel property isn't set to 0, the property determines the error correction level together with the ECCLevel
property. For example, if the ECCLevel property is set to 23 and the ECCCount property is set to 3, a symbol (azSize_37)
which holds 120 codewords should include at least 31 (120 * 23% + 3) error correction codewords, leaving up 89
codewords for encoding the data message. Depending on message length, the symbology will typically have to add extra
error correction codewords above this minimum to fill out the symbol.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_AztecCode" article.

A.1.40 ECCLevel
(TBarcodeFmx2D_AztecCode)

Specifies the alternate minimum error correction percentage for an Aztec Code symbol.

Syntax:

type
{ Defined in the pfmxAztecCode unit }
TAztecCode_EccLevel = 0..99;

property ECCLevel: TAztecCode_EccLevel;

Description:

The property specifies the alternate minimum error correction percentage for an Aztec Code symbol (defined in the
pfmxAztecCode unit), ranging from 0% to 99% plus always, for data security, 3 or more additional error correction
codewords (specified by the ECCCount property). This is called a "minimum" percentage because, depending on
message length, the symbology will typically have to add extra error correction codewords above this minimum to fill out
the symbol.

It determines the error correction level together with the ECCCount property. For example, if the ECCLevel property is set
to 23 and the ECCCount property is set to 3, a symbol (azSize_37) which holds 120 codewords should include at least 31
(120 * 23% + 3) error correction codewords, leaving up 89 codewords for encoding the data message. Depending on
message length, the symbology will typically have to add extra error correction codewords above this minimum to fill out
the symbol.

The property can be one of values from 0 to 99, corresponding to the ECC level from 0% to 99%. They are defined in the
pfmxAztecCode unit.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_AztecCode" article.

2D Barcode FMX Components User Manual

142

A.1.41 ECCLevel
(TBarcodeFmx2D_CompactMatrix)

Specifies which ECC level (error correction code level) will be used to increase strength of a Compact Matrix barcode
symbol.

Syntax:

type
{ Defined in the pfmxCompactMatrix unit }
TCompactMatrix_EccLevel = 1..8;

property ECCLevel: TCompactMatrix_EccLevel;

Description:

The Compact Matrix symbology offers eight levels of error correction, from 1 to 8 respectively in increasing order of
recovery capacity.

The property specifies which ECC level (error correction code level) will be used to increase strength of a Compact Matrix
barcode symbol. It can be one of values from 1 to 8, corresponding to the ECC levels from 1 to 8.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by this property, and the symbol size will not be increased, it may be determined depending on the length of
barcode text, and the error correction code level specified by this property. In other words, only the remaining capacity in
current symbol size will be used to upgrade the error correction code level.

The CurrentECCLevel property can always be used to get the factual error correction code level.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_CompactMatrix" article.

A.1.42 ECCLevel
(TBarcodeFmx2D_DataMatrix)

Specifies which ECC level (error correction code level) will be used to increase strength of a Data Matrix (ECC 000 - 140)
barcode symbol.

Syntax:

type
{ Defined in the pfmxDataMatrix unit }
TDataMatrix_ECCLevel = (dmECC000, dmECC050, dmECC080, dmECC100, dmECC140);

property ECCLevel: TDataMatrix_ECCLevel;

Description:

The Data Matrix (ECC 000 - 140) symbology offers five levels of error correction, referred to as ECC 000, ECC 050, ECC
080, ECC 100 and ECC 140 respectively in increasing order of recovery capacity. In an application, it is important to

2D Barcode FMX Components User Manual

143

understand that these error correction levels result in the generation of a proportional increase in the number of bits in the
message (and hence increase in the size of the symbol), and offer different levels of error recovery.

The property specifies which ECC level (error correction code level) will be used to increase strength of a Data Matrix
(ECC 000 - 140) barcode symbol. It can be one of these values (defined in the pfmxDataMatrix unit):

dmECC000: Indicates to use the ECC 000, namely, no error correction.

dmECC050: Indicates to use the ECC 050, 25% data capacity is used for error correction, up to 2.8% damage can
be corrected.

dmECC080: Indicates to use the ECC 080, 33.3% data capacity is used for error correction, up to 5.5% damage
can be corrected.

dmECC100: Indicates to use the ECC 100, 50% data capacity is used for error correction, up to 12.6% damage
can be corrected.

dmECC140: Indicates to use the ECC 140, 75% data capacity is used for error correction, up to 25% damage can
be corrected.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by this property, and the symbol size will not be increased, it may be determined depending on the length of
barcode text, and the error correction code level specified by this property. In other words, only the remaining capacity in
current symbol size will be used to upgrade the error correction code level.

The CurrentECCLevel property can always be used to get the factual error correction code level.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_DataMatrix" article.

A.1.43 ECCLevel
(TBarcodeFmx2D_GridMatrix)

Specifies which ECC level (error correction code level) will be used to increase strength of a Grid Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxGridMatrix unit }
TGridMatrix_EccLevel = (elLevel_Recommend, elLevel_1, elLevel_2, elLevel_3,
elLevel_4, elLevel_5, elLevel_LowestRecommend);

property ECCLevel: TGridMatrix_EccLevel;

Description:

The Grid Matrix symbology offers five levels of error correction, from 1 to 5 respectively in increasing order of recovery
capacity.

The property specifies which ECC level (error correction code level) will be used to increase strength of a Grid Matrix
barcode symbol. It can be one of these values (defined in the pfmxGridMatrix unit):

elLevel_1: Indicates to use the ECC level 1. The percentage of total capacity for ECC data is 10%. Note, it is
inapplicable to the version 1.

2D Barcode FMX Components User Manual

144

elLevel_2: Indicates to use the ECC level 2. The percentage of total capacity for ECC data is 20%.

elLevel_3: Indicates to use the ECC level 3. The percentage of total capacity for ECC data is 30%.

elLevel_4: Indicates to use the ECC level 4. The percentage of total capacity for ECC data is 40%.

elLevel_5: Indicates to use the ECC level 5. The percentage of total capacity for ECC data is 50%.

elLevel_Recommend: For each symbol version, the denotative ECC levels are listed in the following table:

Version Denotative ECC level

1 ECC level 5

2, 3 ECC level 4

4 - 13 ECC level 3

elLevel_LowestRecommend: For each symbol version, the denotative lowest ECC levels are listed in the
following table:

Version Denotative ECC level

1 ECC level 4

2 ECC level 2

3 - 13 ECC level 1

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by this property, and the symbol size will not be increased, it may be determined depending on the length of
barcode text, and the error correction code level specified by this property. In other words, only the remaining capacity in
current symbol size will be used to upgrade the error correction code level.

The CurrentECCLevel property can always be used to get the factual error correction code level.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_GridMatrix" article.

A.1.44 ECCLevel
(TBarcodeFmx2D_HanXinCode)

Specifies which ECC level (error correction code level) will be used to increase strength of a Han Xin Code barcode
symbol.

Syntax:

type
{ Defined in the pfmxHanXinCode unit }
THanXinCode_EccLevel = (elLevel_1, elLevel_2, elLevel_3, elLevel_4);

property ECCLevel: THanXinCode_EccLevel;

Description:

The Han Xin Code symbology offers four levels of error correction, from L1 to L4 respectively in increasing order of

2D Barcode FMX Components User Manual

145

recovery capacity.

The property specifies which ECC level (error correction code level) will be used to increase strength of a Han Xin Code
barcode symbol. It can be one of these values (defined in the pfmxHanXinCode unit):

elLevel_1: Indicates to use the ECC level L1. The recevory capacities (approx.) is 8%.

elLevel_2: Indicates to use the ECC level L2. The recevory capacities (approx.) is 15%.

elLevel_3: Indicates to use the ECC level L3. The recevory capacities (approx.) is 23%.

elLevel_4: Indicates to use the ECC level L4. The recevory capacities (approx.) is 30%.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by this property, and the symbol size will not be increased, it may be determined depending on the length of
barcode text, and the error correction code level specified by this property. In other words, only the remaining capacity in
current symbol size will be used to upgrade the error correction code level.

The CurrentECCLevel property can always be used to get the factual error correction code level.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_HanXinCode" article.

A.1.45 ECCLevel
(TBarcodeFmx2D_MicroQRCode)

Specifies which ECC level (error correction code level) will be used to increase strength of a Micro QR Code barcode
symbol.

Syntax:

type
{ Defined in the pfmxMicroQRCode unit }
TMicroQRCode_EccLevel = (elLowest, elMedium, elQuality);

property ECCLevel: TMicroQRCode_EccLevel;

Description:

The Micro QR Code symbology offers three levels of error correction, referred to as L, M, and Q respectively in increasing
order of recovery capacity.

The property specifies which ECC level (error correction code level) will be used to increase strength of a Micro QR Code
barcode symbol. It can be one of these values (defined in the pfmxMicroQRCode unit):

elLowest: Indicates to use the ECC level L, up to 7% (approx.) damage can be corrected.

elMedium: Indicates to use the ECC level M, up to 15% (approx.) damage can be corrected.

elQuality: Indicates to use the ECC level Q, up to 25% (approx.) damage can be corrected.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by this property, and the symbol size will not be increased, it may be determined depending on the length of

2D Barcode FMX Components User Manual

146

barcode text, and the error correction code level specified by this property. In other words, only the remaining capacity in
current symbol size will be used to upgrade the error correction code level.

The CurrentECCLevel property can always be used to get the factual error correction code level.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_MicroQRCode" article.

A.1.46 ECCLevel
(TBarcodeFmx2D_PDF417)

Specifies which ECC level (error correction code level) will be used to increase strength of a PDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxPDF417Custom unit }
TPDF417_EccLevel = (elEcc_0, elEcc_1, elEcc_2, elEcc_3, elEcc_4, elEcc_5,
elEcc_6, elEcc_7, elEcc_8, elEcc_Auto);

property ECCLevel: TPDF417_EccLevel;

Description:

The PDF417 symbology offers nine levels of error correction, referred to as ECC 0 to ECC 8 respectively in increasing
order of recovery capacity.

The property specifies which ECC level (error correction code level) will be used to increase strength of a PDF417
barcode symbol. It can be one of values from elECC_0 to elECC_8, corresponding to the ECC level from 0 to 8. Also, it
can be set to elEcc_Auto, indicates the recommended minimum ECC level will be used, depending on the length of
barcode text. These ECC levels are defined in the pfmxPDF417Custom unit, they are listed in following table:

Property value ECC Level Number of
Error correction codewrods

elECC_0 ECC 0 2
elECC_1 ECC 1 4
elECC_2 ECC 2 8
elECC_3 ECC 3 16
elECC_4 ECC 4 32
elECC_5 ECC 5 64
elECC_6 ECC 6 128
elECC_7 ECC 7 256
elECC_8 ECC 8 512

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by this property, and the symbol size will not be increased, it may be determined depending on the length of
barcode text, and the error correction code level specified by this property. In other words, only the remaining capacity in
current symbol size will be used to upgrade the error correction code level.

The CurrentECCLevel property can always be used to get the factual error correction code level.

2D Barcode FMX Components User Manual

147

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_PDF417" article.

A.1.47 ECCLevel
(TBarcodeFmx2D_QRCode)

Specifies which ECC level (error correction code level) will be used to increase strength of a QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxQRCode unit }
TQRCode_ECCLevel = (elLowest, elMedium, elQuality, elHighest);

property ECCLevel: TQRCode_ECCLevel;

Description:

The QR Code symbology offers four levels of error correction, referred to as L, M, Q and H respectively in increasing order
of recovery capacity.

The property specifies which ECC level (error correction code level) will be used to increase strength of a QR Code
barcode symbol. It can be one of these values (defined in the pfmxQRCode unit):

elLowest: Indicates to use the ECC level L, up to 7% (approx.) damage can be corrected.

elMedium: Indicates to use the ECC level M, up to 15% (approx.) damage can be corrected.

elQuality: Indicates to use the ECC level Q, up to 25% (approx.) damage can be corrected.

elHighest: Indicates to use the ECC level H, up to 30% (approx.) damage can be corrected.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by this property, and the symbol size will not be increased, it may be determined depending on the length of
barcode text, and the error correction code level specified by this property. In other words, only the remaining capacity in
current symbol size will be used to upgrade the error correction code level.

The CurrentECCLevel property can always be used to get the factual error correction code level.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_QRCode" article.

A.1.48 ECCLevelUpgrade
(TBarcodeFmx2D_CompactMatrix)

For the Compact Matrix barcode symbols, the property specifies whether to use the remaining capacity to automatically
upgrade the error correction code level in order to increase symbols strength.

Syntax:

2D Barcode FMX Components User Manual

148

property ECCLevelUpgrade: Boolean;

Description:

For a Compact Matrix barcode symbol, the symbol size may be determined depending on the barcode text length and the
error correction code level specified by the ECCLevel property. And the barcode text and the error correction code don't
usually fill the maximum data capacity of the symbol. the property specifies whether to use the remaining capacity to
automatically upgrade the error correction code level, in order to increase symbols strength.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased. The CurrentECCLevel property can be
used to get the factual error correction code level.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of CurrentECCLevel property is always equal to the value of ECCLevel property.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_CompactMatrix" article.

A.1.49 ECCLevelUpgrade
(TBarcodeFmx2D_DataMatrix)

For the Data Matrix (ECC 000 - 140) barcode symbols, the property specifies whether to use the remaining capacity to
automatically upgrade the error correction code level in order to increase symbols strength.

Syntax:

property ECCLevelUpgrade: Boolean;

Description:

For a Data Matrix (ECC 000 - 140) barcode symbol, the symbol size may be determined depending on the barcode text
length and the error correction code level specified by the ECCLevel property. And the barcode text and the error
correction code don't usually fill the maximum data capacity of the symbol. the property specifies whether to use the
remaining capacity to automatically upgrade the error correction code level, in order to increase symbols strength.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased. The CurrentECCLevel property can be
used to get the factual error correction code level.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of CurrentECCLevel property is always equal to the value of ECCLevel property.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_DataMatrix" article.

A.1.50 ECCLevelUpgrade

2D Barcode FMX Components User Manual

149

(TBarcodeFmx2D_GridMatrix)

For the Grid Matrix barcode symbols, the property specifies whether to use the remaining capacity to automatically
upgrade the error correction code level in order to increase symbols strength.

Syntax:

property ECCLevelUpgrade: Boolean;

Description:

For a Grid Matrix barcode symbol, the symbol size may be determined depending on the barcode text length and the error
correction code level specified by the ECCLevel property. And the barcode text and the error correction code don't usually
fill the maximum data capacity of the symbol. the property specifies whether to use the remaining capacity to automatically
upgrade the error correction code level, in order to increase symbols strength.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased. The CurrentECCLevel property can be
used to get the factual error correction code level.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of CurrentECCLevel property is always equal to the value of ECCLevel property.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_GridMatrix" article.

A.1.51 ECCLevelUpgrade
(TBarcodeFmx2D_HanXinCode)

For the Han Xin Code barcode symbols, the property specifies whether to use the remaining capacity to automatically
upgrade the error correction code level in order to increase symbols strength.

Syntax:

property ECCLevelUpgrade: Boolean;

Description:

For a Han Xin Code barcode symbol, the symbol size may be determined depending on the barcode text length and the
error correction code level specified by the ECCLevel property. And the barcode text and the error correction code don't
usually fill the maximum data capacity of the symbol. the property specifies whether to use the remaining capacity to
automatically upgrade the error correction code level, in order to increase symbols strength.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased. The CurrentECCLevel property can be
used to get the factual error correction code level.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of CurrentECCLevel property is always equal to the value of ECCLevel property.

2D Barcode FMX Components User Manual

150

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_HanXinCode" article.

A.1.52 ECCLevelUpgrade
(TBarcodeFmx2D_MicroQRCode)

For the Micro QR Code barcode symbols, the property specifies whether to use the remaining capacity to automatically
upgrade the error correction code level in order to increase symbols strength.

Syntax:

property ECCLevelUpgrade: Boolean;

Description:

For a Micro QR Code barcode symbol, the symbol size may be determined depending on the barcode text length and the
error correction code level specified by the ECCLevel property. And the barcode text and the error correction code don't
usually fill the maximum data capacity of the symbol. the property specifies whether to use the remaining capacity to
automatically upgrade the error correction code level, in order to increase symbols strength.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased. The CurrentECCLevel property can be
used to get the factual error correction code level.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of CurrentECCLevel property is always equal to the value of ECCLevel property.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_MicroQRCode" article.

A.1.53 ECCLevelUpgrade
(TBarcodeFmx2D_PDF417)

For a PDF417 barcode symbol, the property specifies whether to use the remaining capacity to automatically upgrade the
error correction code level in order to increase symbols strength.

Syntax:

property ECCLevelUpgrade: Boolean;

Description:

For a PDF417 barcode symbol, the symbol size may be determined depending on the barcode text length and the error
correction code level specified by the ECCLevel property. And the barcode text and the error correction code don't usually
fill the maximum data capacity of the symbol. the property specifies whether to use the remaining capacity to automatically
upgrade the error correction code level, in order to increase symbols strength.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by

2D Barcode FMX Components User Manual

151

current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. If the ECCLevel property is set to one of values from elECC_0 to elECC_8, the factual error correction code
level is always equal to the value of the ECCLevel property. If the ECCLevel property is set to elEcc_Auto, the factual error
correction code level is the recommended minimum ECC level, depending on the length of barcode text.

The CurrentECCLevel property can be used to get the factual error correction code level.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_PDF417" article.

A.1.54 ECCLevelUpgrade
(TBarcodeFmx2D_QRCode)

For the QR Code barcode symbols, the property specifies whether to use the remaining capacity to automatically upgrade
the error correction code level in order to increase symbols strength.

Syntax:

property ECCLevelUpgrade: Boolean;

Description:

For a QR Code barcode symbol, the symbol size may be determined depending on the barcode text length and the error
correction code level specified by the ECCLevel property. And the barcode text and the error correction code don't usually
fill the maximum data capacity of the symbol. the property specifies whether to use the remaining capacity to automatically
upgrade the error correction code level, in order to increase symbols strength.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by
current symbol size will by used for creating more robust symbols. Note, the new level is always no lower than the level
specified by the ECCLevel property, and the symbol size will not be increased. The CurrentECCLevel property can be
used to get the factual error correction code level.

If the ECCLevelUpgrade property is set to false, the error correction code level specified by the ECCLevel property will be
used always. The value of CurrentECCLevel property is always equal to the value of ECCLevel property.

See also the "Error checking and correcting (ECC)" section in the "TBarcodeFmx2D_QRCode" article.

A.1.55 EnableUpdateDB

Determines whether the user can change the value of the field.

Syntax:

property EnableUpdateDB: Boolean;

Description:

2D Barcode FMX Components User Manual

152

If you link the Barcode or Data property to a data field using the LiveBindings, the EnableUpdateDB property specify
whether the TBarcodeFmx2D barcode component allows the user to change the field value by changing the value of its
Barcode or Data property.

When the EnableUpdateDB property is set to false. The TBarcodeFmx2D barcode component can only be used to draw
the value of the field on the current record into a barcode symbol.

When the EnableUpdateDB property is set to true. If the Barcode property is linked to a data field, the user can change the
field value by changing the Barcode property value of the TBarcodeFmx2D barcode component. If the Data property is
linked to a data field, the user can change the field value by changing the Data property value of the TBarcodeFmx2D
barcode component.

A.1.56 EncodeMode
(TBarcodeFmx2D_DataMatrix)

Specifies the data encoding mode for a Data Matrix (ECC 000 - 140) barcode symbol.

Syntax:

type
{ Defined in the pfmxDataMatrix unit }
TDataMatrix_EncodeMode = (emAuto, emNumeric, emAlpha, emPunctuation,
emAlphanumeric, emASCII, emBinary);

property EncodeMode: TDataMatrix_EncodeMode;

Description:

The Data Matrix (ECC 000 - 140) symbology offers six kinds of encoding mode, referred to as Numeric (Base 11), Alpha
(Base 27), Alphanumeric (Base 37), Punctuation (Base 41), ASCII, and Binary respectively in decreasing order of
encoding density. The property specifies which data encoding mode will be used.

The property can be one of these values (defined in the pfmxDataMatrix unit):

emAuto: The encoding mode will be selected automatically, depending on the barcode text, in other words, the
barcode text to be encoded will be analysed, and an appropriates lowest level (highest encoding density) encoding
mode will be selected, in order to minimize the symbol size. The property CurrentEncodeMode can be used to get
the factual encoding mode.

emNumeric: Indicates to use the Numeric (Base 11) encoding mode. It encodes 10 numeric characters 0 to 9, and
the space character. The encoding density is 3.5 bits per data character. The encoding mode has highest encoding
density.

emAlpha: Indicates to use the Alpha (Base 27) encoding mode. It encodes 26 upper case letters A to Z, and the
space character. The encoding density is 4.8 bits per data character.

emAlphanumeric: Indicates to use the Alphanumeric (Base 37) encoding mode. It encodes 26 upper case letters
A to Z, 10 numeric characters 0 to 9, and the space character. The encoding density is 5.25 bits per data character.

emPunctuation: Indicates to use the Punctuation (Base 41) encoding mode. It encodes 26 upper case letters A to
Z, 10 numeric characters 0 to 9, and the space, point(.), hyphen(-), comma(,) and solidus(/) characters. The
encoding density is 5.5 bits per data character.

2D Barcode FMX Components User Manual

153

emASCII: Indicates to use the ASCII encoding mode. It encodes all 128 ASCII characters from ISO/IEC 646. The
encoding density is 7 bits per data character.

emBinary: Indicates to use the Binary encoding mode. It encodes all 256 8-bit bytes. It shall be used for closed
applications, where the data interpretation shall be determined by the user. The encoding density is 8 bits per byte.
The encoding mode has lowest encoding density.

The CurrentEncodeMode property can always be used to get the factual encoding mode.

See also the "Encoding modes" section in the "TBarcodeFmx2D_DataMatrix" article.

A.1.57 EncodePolicy
(TBarcodeFmx2D_MicroQRCode)

Indicates how to use the encoding mode in a Micro QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxQRCodeCom unit }
TQRCode_EncodePolicy = (epMixingOptimal, epMixingQuick, epSingleMode);

property EncodePolicy: TQRCode_EncodePolicy;

Description:

The Micro QR Code symbology offers four kinds of encoding mode, referred to as Numeric mode, Alphanumeric mode,
Kanji mode and Byte mode respectively in decreasing order of encoding density.

This property indicates how to use these encoding mode by the component. It can be one of these values (defined in the
pfmxQRCodeCom unit):

epMixingOptimal: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode
property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding
modes. The optimal combination of encoding modes will be used in order to minimize the symbol size.

epMixingQuick: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode
property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding
modes. The combination of encoding modes may not be the optimal one, in order to optimize encoding speed.

epSingleMode: The encoding mode will be selected automatically and applied to entire symbol, based on the
barcode text, in other words, the barcode text to be encoded will be analysed, and an appropriates lowest level
(highest encoding density) encoding mode will be selected, in order to minimize the symbol size, and the encoding
mode will not be switched in the sybmol. Note, the Kanji mode will not be used if the AllowKanjiMode property is set
to false.

See also the "Encoding modes" section in the "TBarcodeFmx2D_MicroQRCode" article.

A.1.58 EncodePolicy

2D Barcode FMX Components User Manual

154

(TBarcodeFmx2D_QRCode)

Indicates how to use the encoding mode in a QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxQRCodeCom unit }
TQRCode_EncodePolicy = (epMixingOptimal, epMixingQuick, epSingleMode);

property EncodePolicy: TQRCode_EncodePolicy;

Description:

The QR Code symbology offers four kinds of encoding mode, referred to as Numeric mode, Alphanumeric mode, Kanji
mode and Byte mode respectively in decreasing order of encoding density.

This property indicates how to use these encoding mode by the component. It can be one of these values (defined in the
pfmxQRCodeCom unit):

epMixingOptimal: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode
property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding
modes. The optimal combination of encoding modes will be used in order to minimize the symbol size.

epMixingQuick: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode
property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding
modes. The combination of encoding modes may not be the optimal one, in order to optimize encoding speed.

epSingleMode: The encoding mode will be selected automatically and applied to entire symbol, based on the
barcode text, in other words, the barcode text to be encoded will be analysed, and an appropriates lowest level
(highest encoding density) encoding mode will be selected, in order to minimize the symbol size, and the encoding
mode will not be switched in the sybmol. Note, the Kanji mode will not be used if the AllowKanjiMode property is set
to false.

See also the "Encoding modes" section in the "TBarcodeFmx2D_QRCode" article.

A.1.59 FixedLength
(TBarcodeFmx2D_AztecRunnes)

Specifies whether the leading zeros are required in the barcode text of an Aztec Runes barcode symbol.

Syntax:

property FixedLength: Boolean;

Description:

For the Aztec Runes barcode symbology, if the barcode text is specified by the Barcode property, it must be set to a
number string. If it's secified by the Data property, it must be set to a number in ASCII bytes sequence. The number is an
integer between 0 and 255 (including the boundaries). The property specifies whether the leading zeros are required in
the barcode text.

If the property is set to true, the length of the barcode text must be exactly equal to 3 digits, adding leading zeros are

2D Barcode FMX Components User Manual

155

required if the length is less than 3 digits, such as '0', '2', and '25'.

If the property is set to false, the length of the number barcode text should be less than, or equal to 3 digits, the leading
zeros are optional, such as '0', '12', '012', and '255'. In this case, the barcode symbol isn't changed when you remove
leading zeros from the barcode text or add leading zeros to the barcode text. For example, the barcode symbol '12' is
same as barcode symbol '012'.

Note, for the Aztec Runes barcode symbology, the Barcode property cannot be set to an empty string, otherwise, an
OnInvalidLength will occur. Also, the Data property cannot be set to an empty TBytes array, otherwise, an
OnInvalidDataLength event will occur.

See also the "Character set" and the "Data capacity" sections in the "TBarcodeFmx2D_AztecRunes" article.

A.1.60 Image

Specifies a TImage control to represent the barcode symbol.

Syntax:

property Image: TControl;

Description:

Specifies a TImage control to display the barcode symbol. The barcode picture will not be saved into the DFM file in
design time.

You can link single TImage control to multiple TBarcodeFmx2D components in order to display multiple barcode symbols
in the TImage control (using LeftMargin and TopMargin properties to specify the position for every barcode symbol).

A.1.61 InitialMode
(TBarcodeFmx2D_Code16K)

Specifies the initial mode for Code 16K barcode symbology.

Syntax:

type
{ Defined in the pfmxCode16K unit }
TCode16K_EncodeMode = (emAuto, emModeA, emModeB, emModeC, emModeB_FNC1,
emModeC_FNC1, emModeC_Shift1B, emModeC_Shift2B, emMode_Extended);

property InitialMode: TCode16K_EncodeMode;

Description:

The property specifies the initial mode for Code 16K barcode symbology. The initial mode indicates the initial code set
and may also represent an implied leading FNC1 character or implied leading SHIFT B character as shown in following
table. The code set will be automatically switched if a character is encountered that cannot be encoded by current code

2D Barcode FMX Components User Manual

156

set. And Implied characters function as if they were actual symbol characters but don not occupy any space.

There are seven kinds of initial mode, from 0 to 6, and a kind of extended data length mode. The initial mode values from
emCodeA to emExtended, corresponding to these modes, are defined in the pfmxCode16K unit. These modes and their
values are listed in following table:

Initial
Mode Value

Initial
code
set

Implied
character Description

0 emCodeA A (None) The code set will be automatically switched if another code set
character is encountered.1 emCodeB B (None)

2 emCodeC C (None)
3 emCodeB_FNC1 B FNC1
4 emCodeC_FNC1 C FNC1

5 emCodeC_Shift1B C SHIFT B

First character excepting the message append block (if exists), must
be code set B character (ASCII 32 - ASCII 127), otherwise an
OnInvalidChar or OnInvalidDataChar event will occur. The code set
will be automatically switched if another code set character is
encountered.

6 emCodeC_Shift2B C Double
SHIFT B

First two characters excepting the message append block (if exists),
must be code set B characters (ASCII 32 - ASCII 127), otherwise an
OnInvalidChar or OnInvalidDataChar event will occur. The code set
will be automatically switched if another code set character is
encountered.

Extended
data

length
mode

emMode_Extended B None

Indicates to create a Code 16K barcode symbol in extended data
length mode. An extended data length mode block is required, and it
should be placed at beginning of barcode text, otherwiset the
OnInvalidChar or OnInvalidDataChar event will occur. See also the
"Extended data length mode" section in the
"TBarcodeFmx2D_Code16K" article.

The property can be one of these values: emModeA, emModeB, emModeC, emModeB_FNC1, emModeC_FNC1,
emModeC_Shift1B, emModeC_Shift2B, and emMode_Extended, corresponding to the initial modes 0 to 6, and the
extended data length mode. In this case, it specifies the factual initial mode shown in table above.

Also, the InitialMode property can be set to emAuto (defined in the pfmxCode16K unit), in this case, one of values from
emCodeA to emModeC_Shift2B, corresponding to the initial modes 0 to 6 shown in table above will be selected
automatically, depending on the barcode text, in order to minimize the symbol size.

You can always use the CurrentMode property to get the factual initial mode.

See also the "Initial modes" section in the "TBarcodeFmx2D_Code16K" article.

A.1.62 Inversed
(TBarcodeFmx2D_AztecCode, TBarcodeFmx2D_DataMatrix, etc.)

Specifies whether to represent a barcode symbol in inversed color (reflectance reversal).

Syntax:

property Inversed: Boolean;

2D Barcode FMX Components User Manual

157

Description:

Specifies whether to draw a barcode symbol in inversed color (reflectance reversal).

In general, the barcode symbol is dark foreground on light background. In this case, the Inversed property should be set to
false, and all light modules in the barcode symbol are drawn using the color specified by the SpaceColor property, all dark
modules are drawn using the color specified by the BarColor property.

If the barcode symbol is light foreground on dark background, the Inversed property should be set to true, and all light
modules in the barcode symbol are drawn using the color specified by the BarColor property, all dark modules are drawn
using the color specified by the SpaceColor property.

See diagram:

When the leading quiet zone, trailing quiet zone, top quiet zone, and bottom quiet zone are displayed (the ShowQuietZone
property value is set to true), if the Inversed property is set to false, the color specified by the SpaceColor property will be
used to draw the quiet zones, otherwise, the color specified by the BarColor property will be used. See diagram (the
SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

A.1.63 LeadingQuietZone

Specifies the horizontal width of the leading quiet zone in modules.

Syntax:

property LeadingQuietZone: Integer;

Description:

Specifies the horizontal width of the leading quiet zone in modules. The quiet zone is drawn using the color specified by
the SpaceColor property if the Inversed property is set to false. Otherwise, it's drawn using the color specified by the
BarColor property. See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

158

This property is useful only when the ShowQuietZone property value is set to true or the barcode symbology is a Code 16K
symbol.

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone is drawn always, even if the
ShowQuietZone property value is set to false. See diagram (the SpaceColor property value is set to claSilver in order to
accentuate the quiet zones):

A.1.64 LeftMargin

Specifies the left margin of the barcode symbol in pixels.

Syntax:

property LeftMargin: Integer;

Description:

Specifies the margin between the leftmost side of the barcode symbol and the left side of the TImage control that is
specified by the Image property, in pixels.

If the quiet zones are displayed (please read the ShowQuietZone property about whether or not the quiet zones will be
displayed), they are included in the barcode symbol. See diagram (the SpaceColor property value is set to claSilver in
order to accentuate the quiet zones):

It is set using the following formula:

The Orientation property is set to boLeftRight:

It is the margin between the beginning of the barcode symbol and the left side of the TImage control.

2D Barcode FMX Components User Manual

159

See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

The Orientation property is set to boRightLeft:

It is the margin between the end of the barcode symbol and the left side of the TImage control.

See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

The Orientation property is set to boTopBottom:

It is the margin between the bottom of the barcode symbol and the left side of the TImage control.

See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

The Orientation property is set to boBottomTop:

It is the margin between the top of the barcode symbol and the left side of the TImage control.

See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

160

Note:

For the TBarcodeFmx2D_Code16K barcode components, the leading quiet zone and the trailing quiet zone are included
always, even if the ShowQuietZone is set to false. See diagram (the SpaceColor property value is set to claSilver in order
to accentuate the quiet zones):

A.1.65 Link2D

Specifies whether an RSS symbol (RSS-14, RSS Limited, or RSS Expanded) can be used as the linear component of an
EAN.UCC Composite symbol.

Syntax:

property Link2D: Boolean;

Description:

An RSS barcode symbol (including RSS-14, RSS Limited, or RSS Expanded) can be used together with a CC-A or a
CC-B 2D symobl to create the EAN.UCC composite symbol. The property specifies whether the RSS symbol can be used
as the linear component of an EAN.UCC Composite symbol.

If the property is set to true, the RSS symbol and its contiguous separator pattern shall be aligned with a 2D symbol.
Normally the RSS symbol, its contiguous separator pattern, and the 2D symbol are drawn at the same time, comprising a
single EAN.UCC composite symbol.

If the property is set to false, the RSS symbol will be used as a stand-alone barcode symbol.

Note, a contiguous separator pattern is required between the RSS and the 2D symbol in an EAN.UCC Composite
symbol. In order to drawn the separator pattern on top of the RSS symbol, both the Show2DSeparator and the Link2D

2D Barcode FMX Components User Manual

161

properties must be set to true.

See also the "Composite symbol" section in the "TBarcodeFmx2D_RSS14", "TBarcodeFmx2D_RSSLimited", and
"TBarcodeFmx2D_RSSExpanded" articles.

The following is several examples of the EAN.UCC composite symbol:

A.1.66 Locked

Set the property to true to prevents updating of the barcode component until the property is reset to false.

Syntax:

property Locked: Boolean;

Description:

Set the property to true before making multiple changes to the barcode component. When all changes are complete,
change the property to false so that the changes can be reflected on screen. It prevents excessive redraws and speed
processing time when change the barcode component.

Set the property to true is similar to BeginUpdate method of an other Delphi/C++ Builder control such as a ListBox, Memo,
TreeList, ListView, and set the property to false is similar to its EndUpdate method.

A.1.67 MaxColumns
(TBarcodeFmx2D_PDF417)

2D Barcode FMX Components User Manual

162

Specifies the maximum number of columns for a PDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxPDF417Custom unit }
TPDF417_Columns = 1 .. 30;

property MaxColumns: TPDF417_Columns;

Description:

The property specifies the maximum number of columns for a PDF417 barcode symbol. It can be one of values from 1 to
30, they are defined in the pfmxPDF417Custom unit.

The maximum number of columns together with the maximum number of stacked rows (specified by the MaxRows
property) indicates the maximum symbol size for a PDF417 barcode symbol. And the minimum number of columns
(specified by the MinColumns property) together with the minimum number of stacked rows (specified by the MinRows
property) indicates the minimum symbol size for the PDF417 barcode symbol. Based on the stretch order (specified by
the StretchOrder property), the smallest symbol size that accommodates the barcode text will be automatically selected
between the minimum symbol size and the maximum symbol size.

If the barcode text is so long that it cannot be encoded using the maximum symbol size, an OnInvalidLength (the barcode
text is specified in the Barcode property) or an OnInvalidDataLength (the barcode text is specified in the Data property)
event will occur.

The CurrentRows property can be used to get the factual number of rows.

Note, if the property is set to a value less than the MinColumns property's value, the MinColumns property will be
automatically changed to equal to this property's value. In other words, the MaxColumns property's value is always greater
than or equal to the MinColumns property's value.

See also the "Symbol size" section in the "TBarcodeFmx2D_PDF417" article.

A.1.68 MaxRows
(TBarcodeFmx2D_Code16K)

Specifies the maximum number of stacked rows for a Code 16K barcode symbol.

Syntax:

type
{ Defined in the pfmxCode16K unit }
TCode16K_Rows = 2..16;

property MaxRows: TCode16K_Rows;

Description:

The property specifies the maximum number of stacked rows for a Code 16K barcode symbol. It can be one of values
from 2 to 16. They are defined in the pfmxCode16K unit.

The smallest number of stacked rows that accommodates the barcode text will be automatically selected between the

2D Barcode FMX Components User Manual

163

minimum number of stacked rows (specified by the MinRows property) and the maximum number of stacked rows
(specified by this property).

If the barcode text is so long that it cannot be encoded using the maximum number of stacked rows specified by this
property, an OnInvalidLength (the barcode text is specified in the Barcode property) or an OnInvalidDataLength (the
barcode text is specified in the Data property) event will occur.

The CurrentRows property can be used to get the factual number of stacked rows.

Note, if the property is set to a value less than the MinRows property's value, the MinRows property will be automatically
changed to equal to this property's value. In other words, the MaxRows property's value is always greater than or equal to
the MinRows property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_Code16K" article.

A.1.69 MaxRows
(TBarcodeFmx2D_PDF417)

Specifies the maximum number of stacked rows for a PDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxPDF417Custom unit }
TPDF417_Rows = 3 .. 90;

property MaxRows: TPDF417_Rows;

Description:

The property specifies the maximum number of stacked rows for a PDF417 barcode symbol. It can be one of values from
3 to 90. They are defined in the pfmxPDF417Custom unit.

The maximum number of stacked rows together with the maximum number of columns (specified by the MaxColumns
property) indicates the maximum symbol size for a PDF417 barcode symbol. And the minimum number of stacked rows
(specified by the MinRows property) together with the minimum number of columns (specified by the MinColumns
property) indicates the minimum symbol size for the PDF417 barcode symbol. Based on the stretch order (specified by
the StretchOrder property), the smallest symbol size that accommodates the barcode text will be automatically selected
between the minimum symbol size and the maximum symbol size.

If the barcode text is so long that it cannot be encoded using the maximum symbol size, an OnInvalidLength (the barcode
text is specified in the Barcode property) or an OnInvalidDataLength (the barcode text is specified in the Data property)
event will occur.

The CurrentRows property can be used to get the factual number of stacked rows.

Note, if the property is set to a value less than the MinRows property's value, the MinRows property will be automatically
changed to equal to this property's value. In other words, the MaxRows property's value is always greater than or equal to
the MinRows property's value.

See also the "Symbol size" section in the "TBarcodeFmx2D_PDF417" article.

2D Barcode FMX Components User Manual

164

A.1.70 MaxSegments
(TBarcodeFmx2D_CompactMatrix)

Specifies the maximum number of segments for a Compact Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxCompactMatrix unit }
TCompactMatrix_Segments = 1..32;

property MaxSegments: TCompactMatrix_Segments;

Description:

In horizontal orientation, each Compact Matrix symbol consists of an array of segments with a minimum of 1 segment
(maximum 32 segments). The property specifies the maximum number of segments for a Compact Matrix barcode
symbol. It can be one of values from 1 to 32, they are defined in the pfmxCompactMatrix unit.

The maximum number of segments together with the maximum version (specified by the MaxVersion property) indicates
the maximum symbol size for a Compact Matrix barcode symbol. And the minimum number of segments (specified by the
MinSegments property) together with the minimum version (specified by the MinVersion property) indicates the minimum
symbol size for the Compact Matrix barcode symbol. Based on the stretch order (specified by the StretchOrder property),
the smallest symbol size that accommodates the barcode text will be automatically selected between the minimum symbol
size and the maximum symbol size.

If the barcode text is so long that it cannot be encoded using the maximum symbol size, an OnInvalidLength (the barcode
text is specified in the Barcode property) or an OnInvalidDataLength (the barcode text is specified in the Data property)
event will occur.

The CurrentSegments property can be used to get the factual number of segments.

Note, if the property is set to a value less than the MinSegments property's value, the MinSegments property will be
automatically changed to equal to this property's value. In other words, the MaxSegments property's value is always
greater than or equal to the MinSegments property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_CompactMatrix" article.

A.1.71 MaxSize
(TBarcodeFmx2D_AztecCode)

Specifies the maximum symbol size for an Aztec Code barcode symbol.

Syntax:

type
{ Defined in the pfmxAztecCode unit }

2D Barcode FMX Components User Manual

165

TAztecCode_Size = (azSize_15Compact, azSize_19, azSize_19Compact, azSize_23,
azSize_23Compact, azSize_27, azSize_27Compact, azSize_31, azSize_37, azSize_41,
azSize_45, azSize_49, azSize_53, azSize_57, azSize_61, azSize_67, azSize_71,
azSize_75, azSize_79, azSize_83, azSize_87, azSize_91, azSize_95, azSize_101,
azSize_105, azSize_109, azSize_113, azSize_117, azSize_121, azSize_125,
azSize_131, azSize_135, azSize_139, azSize_143, azSize_147, azSize_151);

property MaxSize: TAztecCode_Size;

Description:

The property specifies the maximum symbol size for an Aztec Code barcode symbol. It can be one of values from
azSize_15Compact to azSize_151. These values denotation the symbol format, number of rows and columns in every
symbol size. For example, the symbol size value azSize_91 denotations the Aztec Code symbol size is 91 rows by 91
columns, not in compact format. These symbol size values are defined in the pfmxAztecCode unit.

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by the MinSize property and the maximum symbol size specified by this property.

If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by this property, an
OnInvalidLength (the barcode text is specified in the Barcode property) or an OnInvalidDataLength (the barcode text is
specified in the Data property) event will occur.

The CurrentSize property can be used to get the factual symbol size.

Note, if the property is set to a value less than the MinSize property's value, the MinSize property will be automatically
changed to equal to this property's value. In other words, the MaxSize property's value is always greater than or equal to
the MinSize property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_AztecCode" article.

A.1.72 MaxSize
(TBarcodeFmx2D_DataMatrix)

Specifies the maximum symbol size for a Data Matrix (ECC 000 - 140) barcode symbol.

Syntax:

type
{ Defined in the pfmxDataMatrix unit }
TDataMatrix_Size = (dmSize_09_09, dmSize_11_11, dmSize_13_13, dmSize_15_15,
dmSize_17_17, dmSize_19_19, dmSize_21_21, dmSize_23_23, dmSize_25_25,
dmSize_27_27, dmSize_29_29, dmSize_31_31, dmSize_33_33, dmSize_35_35,
dmSize_37_37, dmSize_39_39, dmSize_41_41, dmSize_43_43, dmSize_45_45,
dmSize_47_47, dmSize_49_49);

property MaxSize: TDataMatrix_Size;

Description:

The property specifies the maximum symbol size for a Data Matrix (ECC 000 - 140) barcode symbol. It can be one of
values from dmSize_09_09 to dmSize_49_49. These values denotation the number of rows and columns in every symbol

2D Barcode FMX Components User Manual

166

size. For example, the symbol size value dmSize_45_45 denotations the Data Matrix (ECC 000 - 140) symbol size is 45
rows by 45 columns. These symbol size values are defined in the pfmxDataMatrix unit.

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by the MinSize property and the maximum symbol size specified by this property.

If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by this property, an
OnInvalidLength (the barcode text is specified in the Barcode property) or an OnInvalidDataLength (the barcode text is
specified in the Data property) event will occur.

The CurrentSize property can be used to get the factual symbol size.

Note, if the property is set to a value less than the MinSize property's value, the MinSize property will be automatically
changed to equal to this property's value. In other words, the MaxSize property's value is always greater than or equal to
the MinSize property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_DataMatrix" article.

A.1.73 MaxSize
(TBarcodeFmx2D_DataMatrixECC200)

Specifies the maximum symbol size for a Data Matrix (ECC 200) barcode symbol.

Syntax:

type
{ Defined in the pfmxDataMatrixEcc200 unit }
TDataMatrixEcc200_Size = (dmSize_10_10, dmSize_12_12, dmSize_14_14,
dmSize_16_16, dmSize_18_18, dmSize_20_20, dmSize_22_22, dmSize_24_24,
dmSize_26_26, dmSize_32_32, dmSize_36_36, dmSize_40_40, dmSize_44_44,
dmSize_48_48, dmSize_52_52, dmSize_64_64, dmSize_72_72, dmSize_80_80,
dmSize_88_88, dmSize_96_96, dmSize_104_104, dmSize_120_120, dmSize_132_132,
dmSize_144_144, dmSize_8_18, dmSize_8_32, dmSize_12_26, dmSize_12_36,
dmSize_16_36, dmSize_16_48);

property MaxSize: TDataMatrixEcc200_Size;

Description:

The property specifies the maximum symbol size for a Data Matrix (ECC 200) barcode symbol. It can be one of values
from dmSize_10_10 to dmSize_16_48. These values denotation the number of rows and columns in every symbol size.
For example, the symbol size value dmSize_16_36 denotations the Data Matrix (ECC 200) symbol size is 16 rows by 36
columns. These symbol size values are defined in the pfmxDataMatrixEcc200 unit.

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by the MinSize property and the maximum symbol size specified by this property.

If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by this property, an
OnInvalidLength (the barcode text is specified in the Barcode property) or an OnInvalidDataLength (the barcode text is
specified in the Data property) event will occur.

The CurrentSize property can be used to get the factual symbol size.

2D Barcode FMX Components User Manual

167

Note, if the property is set to a value less than the MinSize property's value, the MinSize property will be automatically
changed to equal to this property's value. In other words, the MaxSize property's value is always greater than or equal to
the MinSize property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_DataMatrixECC200" article.

A.1.74 MaxSize
(TBarcodeFmx2D_MicroPDF417)

Specifies the maximum symbol size for a MicroPDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxMicroPDF417 unit }
TMicroPDF417_Size = (mpSize_1_11, mpSize_1_14, mpSize_1_17, mpSize_1_20,
mpSize_1_24, mpSize_1_28, mpSize_2_8, mpSize_2_11, mpSize_2_14, mpSize_2_17,
mpSize_2_20, mpSize_2_23, mpSize_2_26, mpSize_3_6, mpSize_3_8, mpSize_3_10,
mpSize_3_12, mpSize_3_15, mpSize_3_20, mpSize_3_26, mpSize_3_32, mpSize_3_38,
mpSize_3_44, mpSize_4_4, mpSize_4_6, mpSize_4_8, mpSize_4_10, mpSize_4_12,
mpSize_4_15, mpSize_4_20, mpSize_4_26, mpSize_4_32, mpSize_4_38, mpSize_4_44);

property MaxSize: TMicroPDF417_Size;

Description:

The property specifies the maximum symbol size for a MicroPDF417 barcode symbol. It can be one of values from
mpSize_1_11 to mpSize_4_44. These values denotation the number of columns and rows in every symbol size. For
example, the symbol size value mpSize_4_10 denotations the MicroPDF417 symbol size is 10 stacked rows by 4
columns. These symbol size values are defined in the pfmxMicroPDF417 unit.

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by the MinSize property and the maximum symbol size specified by this property.

If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by this property, an
OnInvalidLength (the barcode text is specified in the Barcode property) or an OnInvalidDataLength (the barcode text is
specified in the Data property) event will occur.

The CurrentSize property can be used to get the factual symbol size.

Note, if the property is set to a value less than the MinSize property's value, the MinSize property will be automatically
changed to equal to this property's value. In other words, the MaxSize property's value is always greater than or equal to
the MinSize property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_MicroPDF417" article.

A.1.75 MaxSliceLen

2D Barcode FMX Components User Manual

168

(TBarcodeFmx2D_MicroQRCode)

Specifies the maximum number of bytes to slice the barcode data, in order to limit the depth of recursion.

Syntax:

property MaxSliceLen: Integer;

Description:

If the property EncodePolicy is set to epMixingOptimal, this property specifies the maximum number of bytes to slice the
barcode data or text, each piece will be encoded in optimal combination of encoding modes using the recursion
algorithm. It's useful to limit the depth of recursion, in order to prevent the computer has no response.

If the property is set to 0, the barcode data or text will not be sliced, and it will be encoded in optimal combination of
encoding modes at a time, using the recursion algorithm.

If the property EncodePolicy isn't set to epMixingOptimal, the property value will be ignored.

A.1.76 MaxSliceLen
(TBarcodeFmx2D_QRCode)

Specifies the maximum number of bytes to slice the barcode data, in order to limit the depth of recursion.

Syntax:

property MaxSliceLen: Integer;

Description:

If the property EncodePolicy is set to epMixingOptimal, this property specifies the maximum number of bytes to slice the
barcode data or text, each piece will be encoded in optimal combination of encoding modes using the recursion
algorithm. It's useful to limit the depth of recursion, in order to prevent the computer has no response.

If the property is set to 0, the barcode data or text will not be sliced, and it will be encoded in optimal combination of
encoding modes at a time, using the recursion algorithm.

If the property EncodePolicy isn't set to epMixingOptimal, the property value will be ignored.

A.1.77 MaxVersion
(TBarcodeFmx2D_CompactMatrix)

Specifies the maximum version for a Compact Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxCompactMatrix unit }

2D Barcode FMX Components User Manual

169

TCompactMatrix_Version = 1..32;
property MaxVersion: TCompactMatrix_Version;

Description:

There are 32 vertical sizes of Compact Matrix symbol, referred to as version 1 to 32, in increasing order of symbol height
and data capacity. The property specifies the maximum version for a Compact Matrix barcode symbol. It can be one of
values from 1 to 32. They are defined in the pfmxCompactMatrix unit.

The maximum version together with the maximum number of segments (specified by the MaxSegments property)
indicates the maximum symbol size for a Compact Matrix barcode symbol. And the minimum version (specified by the
MinVersion property) together with the minimum number of segments (specified by the MinSegments property) indicates
the minimum symbol size for the Compact Matrix barcode symbol. Based on the stretch order (specified by the
StretchOrder property), the smallest symbol size that accommodates the barcode text will be automatically selected
between the minimum symbol size and the maximum symbol size.

If the barcode text is so long that it cannot be encoded using the maximum symbol size, an OnInvalidLength (the barcode
text is specified in the Barcode property) or an OnInvalidDataLength (the barcode text is specified in the Data property)
event will occur.

The CurrentVersion property can be used to get the factual version.

Note, if the property is set to a value less than the MinVersion property's value, the MinVersion property will be
automatically changed to equal to this property's value. In other words, the MaxVersion property's value is always greater
than or equal to the MinVersion property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_CompactMatrix" article.

A.1.78 MaxVersion
(TBarcodeFmx2D_GridMatrix)

Specifies the maximum symbol version (symbol size) for a Grid Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxGridMatrix unit }
TGridMatrix_Version = 1..13;

property MaxVersion: TGridMatrix_Version;

Description:

There are thirteen sizes of Grid Matrix symbol, referred to as version 1 to 13, in increasing order of size and data capacity.
The property specifies the maximum symbol version (symbol size) for a Grid Matrix barcode symbol. It can be one of
values from 1 to 13. They are defined in the pfmxGridMatrix unit.

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the
minimum symbol version (symbol size) specified by the MinVersion property and the maximum symbol version (symbol
size) specified by this property.

If the barcode text is so long that it cannot be encoded using the maximum symbol version (symbol size) specified by this

2D Barcode FMX Components User Manual

170

property, an OnInvalidLength (the barcode text is specified in the Barcode property) or an OnInvalidDataLength (the
barcode text is specified in the Data property) event will occur.

The CurrentVersion property can be used to get the factual symbol version (symbol size).

Note, if the property is set to a value less than the MinVersion property's value, the MinVersion property will be
automatically changed to equal to this property's value. In other words, the MaxVersion property's value is always greater
than or equal to the MinVersion property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_GridMatrix" article.

A.1.79 MaxVersion
(TBarcodeFmx2D_HanXinCode)

Specifies the maximum symbol version (symbol size) for a Han Xin Code barcode symbol.

Syntax:

type
{ Defined in the pfmxHanXinCode unit }
THanXinCode_Version = 1..84;

property MaxVersion: THanXinCode_Version;

Description:

There are eighty-four sizes of Han Xin Code symbols, referred to as version 1 to 84, in increasing order of size and data
capacity. The property specifies the maximum symbol version (symbol size) for a Han Xin Code barcode symbol. It can be
one of values from 1 to 84. They are defined in the pfmxHanXinCode unit.

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the
minimum symbol version (symbol size) specified by the MinVersion property and the maximum symbol version (symbol
size) specified by this property.

If the barcode text is so long that it cannot be encoded using the maximum symbol version (symbol size) specified by this
property, an OnInvalidLength (the barcode text is specified in the Barcode property) or an OnInvalidDataLength (the
barcode text is specified in the Data property) event will occur.

The CurrentVersion property can be used to get the factual symbol version (symbol size).

Note, if the property is set to a value less than the MinVersion property's value, the MinVersion property will be
automatically changed to equal to this property's value. In other words, the MaxVersion property's value is always greater
than or equal to the MinVersion property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_HanXinCode" article.

A.1.80 MaxVersion
(TBarcodeFmx2D_MicroQRCode)

2D Barcode FMX Components User Manual

171

Specifies the maximum symbol version (symbol size) for a Micro QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxMicroQRCode unit }
TMicroQRCode_Version = 1..4;

property MaxVersion: TMicroQRCode_Version;

Description:

The property specifies the maximum symbol version (symbol size) for a Micro QR Code barcode symbol. It can be one of
values from 1 to 4, they are defined in the pfmxMicroQRCode unit.

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the
minimum symbol version (symbol size) specified by the MinVersion property and the maximum symbol version (symbol
size) specified by this property.

If the barcode text is so long that it cannot be encoded using the maximum symbol version (symbol size) specified by this
property, an OnInvalidLength (the barcode text is specified in the Barcode property) or an OnInvalidDataLength (the
barcode text is specified in the Data property) event will occur.

The CurrentVersion property can be used to get the factual symbol version (symbol size).

Note, if the property is set to a value less than the MinVersion property's value, the MinVersion property will be
automatically changed to equal to this property's value. In other words, the MaxVersion property's value is always greater
than or equal to the MinVersion property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_MicroQRCode" article.

A.1.81 MaxVersion
(TBarcodeFmx2D_QRCode)

Specifies the maximum symbol version (symbol size) for a QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxQRCode unit }
TQRCode_Version = 1..40;

property MaxVersion: TQRCode_Version;

Description:

The property specifies the maximum symbol version (symbol size) for a QR Code barcode symbol. It can be one of values
from 1 to 40. They are defined in the pfmxQRCode unit.

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the
minimum symbol version (symbol size) specified by the MinVersion property and the maximum symbol version (symbol
size) specified by this property.

2D Barcode FMX Components User Manual

172

If the barcode text is so long that it cannot be encoded using the maximum symbol version (symbol size) specified by this
property, an OnInvalidLength (the barcode text is specified in the Barcode property) or an OnInvalidDataLength (the
barcode text is specified in the Data property) event will occur.

The CurrentVersion property can be used to get the factual symbol version (symbol size).

Note, if the property is set to a value less than the MinVersion property's value, the MinVersion property will be
automatically changed to equal to this property's value. In other words, the MaxVersion property's value is always greater
than or equal to the MinVersion property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_QRCode" article.

A.1.82 MinColumns
(TBarcodeFmx2D_PDF417)

Specifies the minimum number of columns for a PDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxPDF417Custom unit }
TPDF417_Columns = 1 .. 30;

property MinColumns: TPDF417_Columns;

Description:

The property specifies the minimum number of columns for a PDF417 barcode symbol. It can be one of values from 1 to
30, they are defined in the pfmxPDF417Custom unit.

The minimum number of columns together with the minimum number of stacked rows (specified by the MinRows property)
indicates the minimum symbol size for a PDF417 barcode symbol. And the maximum number of columns (specified by the
MaxColumns property) together with the maximum number of stacked rows (specified by the MaxRows property) indicates
the maximum symbol size for the PDF417 barcode symbol. Based on the stretch order (specified by the StretchOrder
property), the smallest symbol size that accommodates the barcode text will be automatically selected between the
minimum symbol size and the maximum symbol size.

The CurrentColumns property can be used to get the factual number of columns.

Note, if the property is set to a value greater than the MaxColumns property's value, the MaxColumns property will be
automatically changed to equal to this property's value. In other words, the MinColumns property's value is always less than
or equal to the MaxColumns property's value.

See also the "Symbol size" section in the "TBarcodeFmx2D_PDF417" article.

A.1.83 MinRows
(TBarcodeFmx2D_Code16K)

2D Barcode FMX Components User Manual

173

Specifies the minimum number of stacked rows for a Code 16K barcode symbol.

Syntax:

type
{ Defined in the pfmxCode16K unit }
TCode16K_Rows = 2..16;

property MinRows: TCode16K_Rows;

Description:

The property specifies the minimum number of stacked rows for a Code 16K barcode symbol. It can be one of values from
2 to 16. They are defined in the pfmxCode16K unit.

The smallest number of stacked rows that accommodates the barcode text will be automatically selected between the
minimum number of stacked rows (specified by this property) and the maximum number of stacked rows (that's specified
by the MaxRows property).

The CurrentRows property can be used to get the factual number of stacked rows.

Note, if the property is set to a value greater than the MaxRows property's value, the MaxRows property will be
automatically changed to equal to this property's value. In other words, the MinRows property's value is always less than or
equal to the MaxRows property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_Code16K" article.

A.1.84 MinRows
(TBarcodeFmx2D_PDF417)

Specifies the minimum number of stacked rows for a PDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxPDF417Custom unit }
TPDF417_Rows = 3 .. 90;

property MinRows: TPDF417_Rows;

Description:

The property specifies the minimum number of stacked rows for a PDF417 barcode symbol. It can be one of values from 3
to 90. They are defined in the pfmxPDF417Custom unit.

The minimum number of stacked rows together with the minimum number of columns (specified by the MinColumns
property) indicates the minimum symbol size for a PDF417 barcode symbol. And the maximum number of stacked rows
(specified by the MaxRows property) together with the maximum number of columns (specified by the MaxColumns
property) indicates the maximum symbol size for the PDF417 barcode symbol. Based on the stretch order (specified by
the StretchOrder property), the smallest symbol size that accommodates the barcode text will be automatically selected
between the minimum symbol size and the maximum symbol size.

The CurrentRows property can be used to get the factual number of stacked rows.

2D Barcode FMX Components User Manual

174

Note, if the property is set to a value greater than the MaxRows property's value, the MaxRows property will be
automatically changed to equal to this property's value. In other words, the MinRows property's value is always less than or
equal to the MaxRows property's value.

See also the "Symbol size" section in the "TBarcodeFmx2D_PDF417" article.

A.1.85 MinSegments
(TBarcodeFmx2D_CompactMatrix)

Specifies the minimum number of segments for a Compact Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxCompactMatrix unit }
TCompactMatrix_Segments = 1..32;

property MinSegments: TCompactMatrix_Segments;

Description:

In horizontal orientation, each Compact Matrix symbol consists of an array of segments with a minimum of 1 segment
(maximum 32 segments). The property specifies the minimum number of segments for a Compact Matrix barcode symbol.
It can be one of values from 1 to 32, they are defined in the pfmxCompactMatrix unit.

The minimum number of segments together with the minimum version (specified by the MinVersion property) indicates the
minimum symbol size for a Compact Matrix barcode symbol. And the maximum number of segments (specified by the
MaxSegments property) together with the maximum version (specified by the MaxVersion property) indicates the
maximum symbol size for the Compact Matrix barcode symbol. Based on the stretch order (specified by the StretchOrder
property), the smallest symbol size that accommodates the barcode text will be automatically selected between the
minimum symbol size and the maximum symbol size.

The CurrentSegments property can be used to get the factual number of segments.

Note, if the property is set to a value greater than the MaxSegments property's value, the MaxSegments property will be
automatically changed to equal to this property's value. In other words, the MinSegments property's value is always less
than or equal to the MaxSegments property's value.

See also the "Symbol sizes" section in the " TBarcodeFmx2D_CompactMatrix" article.

A.1.86 MinSize
(TBarcodeFmx2D_AztecCode)

Specifies the minimum symbol size for an Aztec Code barcode symbol.

Syntax:

2D Barcode FMX Components User Manual

175

type
{ Defined in the pfmxAztecCode unit }
TAztecCode_Size = (azSize_15Compact, azSize_19, azSize_19Compact, azSize_23,
azSize_23Compact, azSize_27, azSize_27Compact, azSize_31, azSize_37, azSize_41,
azSize_45, azSize_49, azSize_53, azSize_57, azSize_61, azSize_67, azSize_71,
azSize_75, azSize_79, azSize_83, azSize_87, azSize_91, azSize_95, azSize_101,
azSize_105, azSize_109, azSize_113, azSize_117, azSize_121, azSize_125,
azSize_131, azSize_135, azSize_139, azSize_143, azSize_147, azSize_151);

property MinSize: TAztecCode_Size;

Description:

The property specifies the minimum symbol size for an Aztec Code barcode symbol. It can be one of values from
azSize_15Compact to azSize_151. These values denotation the symbol format, number of rows and columns in every
symbol size. For example, the symbol size value azSize_19Compact denotations the Aztec Code symbol size is 19 rows
by 19 columns, in compact format. These symbol size values are defined in the pfmxAztecCode unit.

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by this property and the maximum symbol size that's specified by the MaxSize property.

The CurrentSize property can be used to get the factual symbol size.

Note, if the property is set to a value greater than the MaxSize property's value, the MaxSize property will be automatically
changed to equal to this property's value. In other words, the MinSize property's value is always less than or equal to the
MaxSize property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_AztecCode" article.

A.1.87 MinSize
(TBarcodeFmx2D_DataMatrix)

Specifies the minimum symbol size for a Data Matrix (ECC 000 - 140) barcode symbol.

Syntax:

type
{ Defined in the pfmxDataMatrix unit }
TDataMatrix_Size = (dmSize_09_09, dmSize_11_11, dmSize_13_13, dmSize_15_15,
dmSize_17_17, dmSize_19_19, dmSize_21_21, dmSize_23_23, dmSize_25_25,
dmSize_27_27, dmSize_29_29, dmSize_31_31, dmSize_33_33, dmSize_35_35,
dmSize_37_37, dmSize_39_39, dmSize_41_41, dmSize_43_43, dmSize_45_45,
dmSize_47_47, dmSize_49_49);

property MinSize: TDataMatrix_Size;

Description:

The property specifies the minimum symbol size for a Data Matrix (ECC 000 - 140) barcode symbol. It can be one of
values from dmSize_09_09 to dmSize_49_49. These values denotation the number of rows and columns in every symbol
size. For example, the symbol size value dmSize_29_29 denotations the Data Matrix (ECC 000 - 140) symbol size is 29

2D Barcode FMX Components User Manual

176

rows by 29 columns. These symbol size values are defined in the pfmxDataMatrix unit.

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by this property and the maximum symbol size that's specified by the MaxSize property.

The CurrentSize property can be used to get the factual symbol size.

Note, if the property is set to a value greater than the MaxSize property's value, the MaxSize property will be automatically
changed to equal to this property's value. In other words, the MinSize property's value is always less than or equal to the
MaxSize property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_DataMatrix" article.

A.1.88 MinSize
(TBarcodeFmx2D_DataMatrixECC200)

Specifies the minimum symbol size for a Data Matrix (ECC 200) barcode symbol.

Syntax:

type
{ Defined in the pfmxDataMatrixEcc200 unit }
TDataMatrixEcc200_Size = (dmSize_10_10, dmSize_12_12, dmSize_14_14,
dmSize_16_16, dmSize_18_18, dmSize_20_20, dmSize_22_22, dmSize_24_24,
dmSize_26_26, dmSize_32_32, dmSize_36_36, dmSize_40_40, dmSize_44_44,
dmSize_48_48, dmSize_52_52, dmSize_64_64, dmSize_72_72, dmSize_80_80,
dmSize_88_88, dmSize_96_96, dmSize_104_104, dmSize_120_120, dmSize_132_132,
dmSize_144_144, dmSize_8_18, dmSize_8_32, dmSize_12_26, dmSize_12_36,
dmSize_16_36, dmSize_16_48);

property MinSize: TDataMatrixEcc200_Size;

Description:

The property specifies the minimum symbol size for a Data Matrix (ECC 200) barcode symbol. It can be one of values
from dmSize_10_10 to dmSize_16_48. These values denotation the number of rows and columns in every symbol size.
For example, the symbol size value dmSize_8_18 denotations the Data Matrix (ECC 200) symbol size is 8 rows by 18
columns. These symbol size values are defined in the pfmxDataMatrixEcc200 unit.

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by this property and the maximum symbol size that's specified by the MaxSize property.

The CurrentSize property can be used to get the factual symbol size.

Note, if the property is set to a value greater than the MaxSize property's value, the MaxSize property will be automatically
changed to equal to this property's value. In other words, the MinSize property's value is always less than or equal to the
MaxSize property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_DataMatrixECC200" article.

2D Barcode FMX Components User Manual

177

A.1.89 MinSize
(TBarcodeFmx2D_MicroPDF417)

Specifies the minimum symbol size for an MicroPDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxMicroPDF417 unit }
TMicroPDF417_Size = (mpSize_1_11, mpSize_1_14, mpSize_1_17, mpSize_1_20,
mpSize_1_24, mpSize_1_28, mpSize_2_8, mpSize_2_11, mpSize_2_14, mpSize_2_17,
mpSize_2_20, mpSize_2_23, mpSize_2_26, mpSize_3_6, mpSize_3_8, mpSize_3_10,
mpSize_3_12, mpSize_3_15, mpSize_3_20, mpSize_3_26, mpSize_3_32, mpSize_3_38,
mpSize_3_44, mpSize_4_4, mpSize_4_6, mpSize_4_8, mpSize_4_10, mpSize_4_12,
mpSize_4_15, mpSize_4_20, mpSize_4_26, mpSize_4_32, mpSize_4_38, mpSize_4_44);

property MinSize: TMicroPDF417_Size;

Description:

The property specifies the minimum symbol size for a MicroPDF417 barcode symbol. It can be one of values from
mpSize_1_11 to mpSize_4_44. These values denotation the number of columns and rows in every symbol size. For
example, the symbol size value mpSize_3_12 denotations the MicroPDF417 symbol size is 12 stacked rows by 3
columns. These symbol size values are defined in the pfmxMicroPDF417 unit.

The smallest symbol size that accommodates the barcode text will be automatically selected between the minimum
symbol size specified by this property and the maximum symbol size that's specified by the MaxSize property.

The CurrentSize property can be used to get the factual symbol size.

Note, if the property is set to a value greater than the MaxSize property's value, the MaxSize property will be automatically
changed to equal to this property's value. In other words, the MinSize property's value is always less than or equal to the
MaxSize property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_MicroPDF417" article.

A.1.90 MinVersion
(TBarcodeFmx2D_CompactMatrix)

Specifies the minimum version for a Compact Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxCompactMatrix unit }
TCompactMatrix_Version = 1..32;

property MinVersion: TCompactMatrix_Version;

Description:

2D Barcode FMX Components User Manual

178

There are 32 vertical sizes of Compact Matrix symbol, referred to as version 1 to 32, in increasing order of symbol height
and data capacity. The property specifies the minimum version for a Compact Matrix barcode symbol. It can be one of
values from 1 to 32. They are defined in the pfmxCompactMatrix unit.

The minimum version together with the minimum number of segments (specified by the MinSegments property) indicates
the minimum symbol size for a Compact Matrix barcode symbol. And the maximum version (specified by the MaxVersion
property) together with the maximum number of segments (specified by the MaxSegments property) indicates the
maximum symbol size for the Compact Matrix barcode symbol. Based on the stretch order (specified by the StretchOrder
property), the smallest symbol size that accommodates the barcode text will be automatically selected between the
minimum symbol size and the maximum symbol size.

The CurrentVersion property can be used to get the factual version.

Note, if the property is set to a value greater than the MaxVersion property's value, the MaxVersion property will be
automatically changed to equal to this property's value. In other words, the MinVersion property's value is always less than
or equal to the MaxVersion property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_CompactMatrix" article.

A.1.91 MinVersion
(TBarcodeFmx2D_GridMatrix)

Specifies the minimum symbol version (symbol size) for a Grid Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxGridMatrix unit }
TGridMatrix_Version = 1..13;

property MinVersion: TGridMatrix_Version;

Description:

There are thirteen sizes of Grid Matrix symbol, referred to as version 1 to 13, in increasing order of size and data capacity.
The property specifies the minimum symbol version (symbol size) for a Grid Matrix barcode symbol. It can be one of
values from 1 to 13. They are defined in the pfmxGridMatrix unit.

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the
minimum symbol version (symbol size) specified by this property and the maximum symbol version (symbol size) that's
specified by the MaxVersion property.

The CurrentVersion property can be used to get the factual symbol version (symbol size).

Note, if the property is set to a value greater than the MaxVersion property's value, the MaxVersion property will be
automatically changed to equal to this property's value. In other words, the MinVersion property's value is always less than
or equal to the MaxVersion property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_GridMatrix" article.

2D Barcode FMX Components User Manual

179

A.1.92 MinVersion
(TBarcodeFmx2D_HanXinCode)

Specifies the minimum symbol version (symbol size) for a Han Xin Code barcode symbol.

Syntax:

type
{ Defined in the pfmxHanXinCode unit }
THanXinCode_Version = 1..84;

property MinVersion: THanXinCode_Version;

Description:

There are eighty-four sizes of Han Xin Code symbols, referred to as version 1 to 84, in increasing order of size and data
capacity. The property specifies the minimum symbol version (symbol size) for a Han Xin Code barcode symbol. It can be
one of values from 1 to 84. They are defined in the pfmxHanXinCode unit.

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the
minimum symbol version (symbol size) specified by this property and the maximum symbol version (symbol size) that's
specified by the MaxVersion property.

The CurrentVersion property can be used to get the factual symbol version (symbol size).

Note, if the property is set to a value greater than the MaxVersion property's value, the MaxVersion property will be
automatically changed to equal to this property's value. In other words, the MinVersion property's value is always less than
or equal to the MaxVersion property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_HanXinCode" article.

A.1.93 MinVersion
(TBarcodeFmx2D_MicroQRCode)

Specifies the minimum symbol version (symbol size) for a Micro QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxMicroQRCode unit }
TMicroQRCode_Version = 1..4;

property MinVersion: TMicroQRCode_Version;

Description:

The property specifies the minimum symbol version (symbol size) for a Micro QR Code barcode symbol. It can be one of
values from 1 to 4, they are defined in the pfmxMicroQRCode unit.

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the

2D Barcode FMX Components User Manual

180

minimum symbol version (symbol size) specified by this property and the maximum symbol version (symbol size) that's
specified by the MaxVersion property.

The CurrentVersion property can be used to get the factual symbol version (symbol size).

Note, if the property is set to a value greater than the MaxVersion property's value, the MaxVersion property will be
automatically changed to equal to this property's value. In other words, the MinVersion property's value is always less than
or equal to the MaxVersion property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_MicroQRCode" article.

A.1.94 MinVersion
(TBarcodeFmx2D_QRCode)

Specifies the minimum symbol version (symbol size) for a QR Code barcode symbol.

Syntax:

type
{ Defined in the pfmxQRCode unit }
TQRCode_Version = 1..40;

property MinVersion: TQRCode_Version;

Description:

The property specifies the minimum symbol version (symbol size) for a QR Code barcode symbol. It can be one of values
from 1 to 40. They are defined in the pfmxQRCode unit.

The smallest symbol version (symbol size) that accommodates the barcode text will be automatically selected between the
minimum symbol version (symbol size) specified by this property and the maximum symbol version (symbol size) that's
specified by the MaxVersion property.

The CurrentVersion property can be used to get the factual symbol version (symbol size).

Note, if the property is set to a value greater than the MaxVersion property's value, the MaxVersion property will be
automatically changed to equal to this property's value. In other words, the MinVersion property's value is always less than
or equal to the MaxVersion property's value.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_QRCode" article.

A.1.95 Mirrored
(TBarcodeFmx2D_AztecCode, TBarcodeFmx2D_DataMatrix, etc.)

Specifies whether the barcode symbol is reversed right to left (horizontal mirror reversal).

Syntax:

2D Barcode FMX Components User Manual

181

property Mirrored: Boolean;

Description:

The property specifies whether the barcode symbol is reversed right to left (horizontal mirror reversal). If barcode symbols
are obtained using a reflected optical path, a reversed scan direction or from behind through a clear substrate, you can set
the Mirror property to true, so that the barcode symbols are easily autodiscriminated and decode with a standard reader.
See diagram:

If the leading, trailing, top, and bottom quiet zones are displayed (the ShowQuietZone property is set to true), they will not
be included in the barcode symbol, and will not be reversed. See diagram (the SpaceColor property value is set to
claSilver in order to accentuate the quiet zones):

If the barcode symbol is drawn using non-left-to-right orientation (the Orienation property isn't equal to boLeftRight, or the
angle parameter isn't equal to zero degree in the DrawTo or the Print methods), the left to right reversal operation will be
performed firstly, then the rotation operation. See diagram:

A.1.96 Mode
(TBarcodeFmx2D_MaxiCode)

Specifies which mode of MaxiCode symbol will be used to generate the MaxiCode barcode symbol.

Syntax:

type
{ Defined in the pfmxMaxiCode unit }
TMaxiCode_Mode = 2..6;

property Mode: TMaxiCode_Mode;

Description:

The property specifies which mode of MaxiCode symbol will be used to generate the MaxiCode barcode symbol. It can be
one of these values (defined in the pfmxMaxiCode unit):

2D Barcode FMX Components User Manual

182

2: Indicates to use the mode 2. It encodes a structured carrier message with a numeric postal code, and an optional
secondary message. A numeric postal code, a country code, and a class of service code assigned by the carrier
are included in the structured carrier message. The symbol employs enhanced error correction for the structured
carrier message and standard error correction for the secondary message.

3: Indicates to use the mode 3. It encodes a structured carrier message with an alphanumeric postal code, and an
optional secondary message. An alphanumeric postal code, a country code, and a class of service code assigned
by the carrier are included in the structured carrier message. The symbol employs enhanced error correction for the
structured carrier message and standard error correction for the secondary message.

The mode 3 is similar to mode 2, but the postal code field encodes 6 alphanumeric characters.

4: Indicates to use the mode 4. It encodes an unformatted message. The barcode message is divided into a
primary message and a secondary message internally, the symbol employs enhanced error correction for the
primary message and standard error correction for the secondary message.

5: Indicates to use the mode 5. It encodes an unformatted message. The barcode message is divided into a
primary message and a secondary message internally, the symbol employs enhanced error correction for both the
primary and secondary messages.

The mode 5 is similar to mode 4, but it employs enhanced error correction for secondary messages.

6: Indicates to use the mode 6. It encodes a message used to program the reader system. The barcode message is
divided into a primary message and a secondary message internally, the symbol employs enhanced error
correction for the primary message and standard error correction for the secondary message.

You can set the AutoMode property to true, in order to automatically select the suitable mode depending on the barcode
text and the value of this property. And use the CurrentMode property to get the factual mode. See also the "AutoMode"
property.

See also the "Modes" sections in the "TBarcodeFmx2D_MaxiCode" article.

A.1.97 Module

Specifies the module size in pixels.

Syntax:

property Module: Integer;

Description:

The property specifies the module size in pixels in the horizontal direction.

For the Matrix 2D barcode symbologies, the module is single cell in the matrix symbol used to encode one bit data.

In the TBarcodeFmx2D_AztecCode, TBarcodeFmx2D_AztecRunes, TBarcodeFmx2D_CompactMatrix,
TBarcodeFmx2D_DataMatrix, TBarcodeFmx2D_DataMatrixECC200, TBarcodeFmx2D_GridMatrix,
TBarcodeFmx2D_HanXinCode, TBarcodeFmx2D_QRCode, and TBarcodeFmx2D_MicroQRCode barcode
symbologies, the module is a suqare shape, the property specifies the module width and height in pixels. See
diagram:

2D Barcode FMX Components User Manual

183

In the TBarcodeFmx2D_MaxiCode symbology, the module is a regular hexagonal shape. The property specifies the
horizonal width of a module, in pixels, including spacing between modules. Also, it's the center to center horizontal
distance between adjacent modules. See diagram:

F or Stacked 2D barcode symbology and Linear 1D barcode symbologies, including TBarcodeFmx2D_Code16K,
TBarcodeFmx2D_PDF417, TBarcodeFmx2D_MicroPDF417, TBarcodeFmx2D_RSS14,
TBarcodeFmx2D_RSSLimited, and TBarcodeFmx2D_RSSExpanded symbologies, the module is the thinest bar (or
space) in the barcode symbol. The property specifies the module width in pixels. See diagram:

A.1.98 Opacity

Specifies the transparency-level of entire barcode symbol.

Syntax:

property Opacity: Single;

Description:

Specifies the transparency-level of entire barcode symbol, where 1 is not transparant at all, 0.5 is 50% see-through, and 0
is completely transparent.

The property defaults to 1, meaning not transparant at all.

Note, if the Inversed property is set to false, you can use the alpha channel of the SpaceColor property value to specify the
transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha channel of the
BarColor property value to specify the transparency-level of foreground color (bars or dark modules). If the Inversed
property is set to true, you can use the alpha channel of the BarColor property value to specify the transparency-level of
bakcground color (spaces or light modules, and quiet zones), and use the alpha channel of the SpaceColor property value
to specify the transparency-level of fore-ground color (bars or dark modules).

2D Barcode FMX Components User Manual

184

A.1.99 Options
(TBarcodeFmx2D_MicroPDF417)

The Options property is an advanced feature which allows low level control over data encoding for a MicroPDF417
symbol.

Syntax:

type
{ Defined in the pfmxPDF417Com unit }
TPDF417_Option = (poIgnoreShiftBeforeECI, poFirst903TextAlphaLatch,
poFirst904TextMixedLatch, po906TextAlphaLatch, po907TextAlphaLatch,
po908TextAlphaLatch, po910TextAlphaLatch, po912TextAlphaLatch,
po914TextAlphaLatch, po915TextAlphaLatch, poFirstFNC1MatchAI01,
poMicroPDF417Explicit901);

{ Defined in the pfmxPDF417Com unit }
TPDF417_Options = set of TPDF417_Option;
{ Defined in the pfmxMicroPDF417 unit }
TMicroPDF417_Options = TPDF417_Options;

property Options: TMicroPDF417_Options;

Description:

For some reader, the encoding algorithm and meanings of some function codewords don't conform with the MicroPDF417
specification. The property can be used to change the encoding algorithm and meanings of these fucntion codewords, in
order to match the reader.

The following list describes the values that can be included in the Options property (defined in the pfmxPDF417Com unit):

poIgnoreShiftBeforeECI: An ECI escape sequence may be placed anywhere within Text Compaction mode.
Normally, the sub-mode invoked immediately prior to the ECI escape sequence is preserved for the encodation
immediately after it. Thus, sub-mode latches and shifts are preserved across an ECI escape sequence; and thus a
sub-mode shift immediately before an ECI escape sequence is not ignored. If the value is included in the Options
property, the sub-mode shift immediately before an ECI escape sequence is ignored, but a sub-mode latch
immediately before an ECI escape sequence is never ignored.

poFirst903TextAlphaLatch: If the function codeword 903 is placed at beginning of barcode text, it represents a
leading FNC1 character in First position mode. Also, it normally implies a mode latch to Mixed sub-mode of Text
Compaction mode, the value indicates that it implies a mode latch to Alpha sub-mode of Text Compaction mode.

poFirst904TextMixedLatch: If the function codeword 904 is placed at beginning of barcode text, it represents a
leading FNC1 character in First position mode. Also, it normally implies a mode latch to Numeric Compaction
mode, the value indicates that it implies a mode latch to Mixed sub-mode of Text Compaction mode.

po906TextAlphaLatch: The function codeword 906 represents a leading FNC1 character in First position mode.
Also, it normally implies a mode latch to Mixed sub-mode of Text Compaction mode, the value indicates that it
implies a mode latch to Alpha sub-mode of Text Compaction mode.

po907TextAlphaLatch: The function codeword 907 represents a leading FNC1 character in First position mode.
Also, it normally implies a mode latch to Numeric Compaction mode, the value indicates that it implies a mode latch
to Alpha sub-mode of Text Compaction mode.

2D Barcode FMX Components User Manual

185

po908TextAlphaLatch: The function codeword 908 followed by an application indicator (single Latin alphabetic
character from the set "a" to "z" and "A" to "Z", or a two-digit number) represents a leading FNC1 character in
"Second position" mode. Also, it normally implies a mode latch to Mixed sub-mode of Text Compaction mode, the
value indicates that it implies a mode latch to Alpha sub-mode of Text compaction mode.

po910TextAlphaLatch: The function codeword 910 indicates that the MicroPDF417 symbol's data output shall
conform with the Code128 specification. Also, it normally implies a mode latch to Mixed sub-mode of Text
compaction mode, the value indicates that it implies a mode latch to Alpha sub-mode of Text compaction mode.

po912TextAlphaLatch: Normally, the function codeword 912 represents a leading FNC1 character in First
position mode and implies a mode latch to Numeric Compaction mode. Also, it encodes that the data begins with a
6-digit date field (Application Identifier is 11, 13, 15, or 17), and this date field may be followed by an implied
Application Identifier 10 or 21 as well. The value indicates that it only implies a mode latch to Alpha sub-mode of
Text compaction mode.

po914TextAlphaLatch: The function codeword 914 represents a leading FNC1 character in First position mode
and indicates that the data begins with an implied Application Identifier is 10. Also, it normally implies a mode latch
to Numeric compaction mode, the value indicates that it implies a mode latch to Alpha sub-mode of Text
compaction mode.

If the value isn't included in Options property, the function codeword 914 shall be followed by at least 1 numeric
character.

po915TextAlphaLatch: The function codeword 915 represents a leading FNC1 character in First position mode
and indicates that the data begins with an implied Application Identifier is 21. Also, it normally implies a mode latch
to Numeric compaction mode, the value indicates that it implies a mode latch to Alpha sub-mode of Text
compaction mode.

If the value isn't included in Options property, the function codeword 915 shall be followed by at least 1 numeric
character.

poFirstFNC1MatchAI01: When the poFirstFNC1MatchAI01 is included in the value of Options property, if the "\f"
followed by a SSC-14 number (including Application Identifier 01 and 13-digit data, the checkdigit isn't required) is
placed at beginnig of barcode, the function codeword 905 will be selected to encode the FNC1 character in order to
reduce the symbol size (the leading Application Identifier 01 is not encoded in the SSC-14 number). Otherwise, the
function codeword 905 will be selected to encode the FNC1 character.

poMicroPDF417Explicit901: In the specification of MicroPDF417, the initial compaction mode in effect at the start
of each symbol shall always be Byte compaction mode, but some readers use the other compaction mode (e.g.
Alpha sub-mode of Text compaction) as the initial compaction mode. The value indicates to explicitly insert a mode
latch to Byte compaction mode into beginning of symbol data, in order to work with these reader.

See also the "Character set", "Escape sequences", and "Extended Channel Interpretation (ECI)" sections in the
"TBarcodeFmx2D_MicroPDF417" article.

A.1.100 Options
(TBarcodeFmx2D_PDF417)

The Options property is an advanced feature which allows low level control over data encoding for a PDF417 symbol.

2D Barcode FMX Components User Manual

186

Syntax:

type
{ Defined in the pfmxPDF417Com unit }
TPDF417_Option = (poIgnoreShiftBeforeECI, poFirst903TextAlphaLatch,
poFirst904TextMixedLatch, po906TextAlphaLatch, po907TextAlphaLatch,
po908TextAlphaLatch, po910TextAlphaLatch, po912TextAlphaLatch,
po914TextAlphaLatch, po915TextAlphaLatch, poFirstFNC1MatchAI01,
poMicroPDF417Explicit901);

{ Defined in the pfmxPDF417Com unit }
TPDF417_Options = set of TPDF417_Option;

property Options: TPDF417_Options;

Description:

For some reader, the encoding algorithm and meanings of some function codewords don't conform with the PDF417
specification. The property can be used to change the encoding algorithm and meanings of these fucntion codewords, in
order to match the reader.

The following list describes the values that can be included in the Options property (defined in the pfmxPDF417Com unit):

poIgnoreShiftBeforeECI: An ECI escape sequence may be placed anywhere within Text Compaction mode.
Normally, the sub-mode invoked immediately prior to the ECI escape sequence is preserved for the encodation
immediately after it. Thus, sub-mode latches and shifts are preserved across an ECI escape sequence; and thus a
sub-mode shift immediately before an ECI escape sequence is not ignored. If the value is included in the Options
property, the sub-mode shift immediately before an ECI escape sequence is ignored, but a sub-mode latch
immediately before an ECI escape sequence is never ignored.

poFirst903TextAlphaLatch: If the function codeword 903 is placed at beginning of barcode text, it represents a
leading FNC1 character in First position mode. Also, it normally implies a mode latch to Mixed sub-mode of Text
Compaction mode, the value indicates that it implies a mode latch to Alpha sub-mode of Text Compaction mode.

poFirst904TextMixedLatch: If the function codeword 904 is placed at beginning of barcode text, it represents a
leading FNC1 character in First position mode. Also, it normally implies a mode latch to Numeric Compaction
mode, the value indicates that it implies a mode latch to Mixed sub-mode of Text Compaction mode.

po906TextAlphaLatch: The function codeword 906 represents a leading FNC1 character in First position mode.
Also, it normally implies a mode latch to Mixed sub-mode of Text Compaction mode, the value indicates that it
implies a mode latch to Alpha sub-mode of Text Compaction mode.

po907TextAlphaLatch: The function codeword 907 represents a leading FNC1 character in First position mode.
Also, it normally implies a mode latch to Numeric Compaction mode, the value indicates that it implies a mode latch
to Alpha sub-mode of Text Compaction mode.

po908TextAlphaLatch: The function codeword 908 followed by an application indicator (single Latin alphabetic
character from the set "a" to "z" and "A" to "Z", or a two-digit number) represents a leading FNC1 character in
"Second position" mode. Also, it normally implies a mode latch to Mixed sub-mode of Text Compaction mode, the
value indicates that it implies a mode latch to Alpha sub-mode of Text compaction mode.

po910TextAlphaLatch: The function codeword 910 indicates that the PDF417 symbol's data output shall conform
with the Code128 specification. Also, it normally implies a mode latch to Mixed sub-mode of Text compaction
mode, the value indicates that it implies a mode latch to Alpha sub-mode of Text compaction mode.

po912TextAlphaLatch: Normally, the function codeword 912 represents a leading FNC1 character in First

2D Barcode FMX Components User Manual

187

position mode and implies a mode latch to Numeric Compaction mode. Also, it encodes that the data begins with a
6-digit date field (Application Identifier is 11, 13, 15, or 17), and this date field may be followed by an implied
Application Identifier 10 or 21 as well. The value indicates that it only implies a mode latch to Alpha sub-mode of
Text compaction mode.

po914TextAlphaLatch: The function codeword 914 represents a leading FNC1 character in First position mode
and indicates that the data begins with an implied Application Identifier is 10. Also, it normally implies a mode latch
to Numeric compaction mode, the value indicates that it implies a mode latch to Alpha sub-mode of Text
compaction mode.

If the value isn't included in Options property, the function codeword 914 shall be followed by at least 1 numeric
character.

po915TextAlphaLatch: The function codeword 915 represents a leading FNC1 character in First position mode
and indicates that the data begins with an implied Application Identifier is 21. Also, it normally implies a mode latch
to Numeric compaction mode, the value indicates that it implies a mode latch to Alpha sub-mode of Text
compaction mode.

If the value isn't included in Options property, the function codeword 915 shall be followed by at least 1 numeric
character.

poFirstFNC1MatchAI01: When the poFirstFNC1MatchAI01 is included in the value of Options property, if the "\f"
followed by a SSC-14 number (including Application Identifier 01 and 13-digit data, the checkdigit isn't required) is
placed at beginnig of barcode, the function codeword 905 will be selected to encode the FNC1 character in order to
reduce the symbol size (the leading Application Identifier 01 is not encoded in the SSC-14 number). Otherwise, the
function codeword 905 will be selected to encode the FNC1 character.

poMicroPDF417Explicit901: The value isn't used in the TBarcodeFmx2D_PDF417 component.

See also the "Character set", "Escape sequences", and "Extended Channel Interpretation (ECI)" sections in the
"TBarcodeFmx2D_PDF417" article.

A.1.101 Orientation

Controls the orientation of the barcode symbol.

Syntax:

type
{ Defined in the pfmxBarcode2D unit }
TBarcodeOrientation = (boLeftRight, boRightLeft, boTopBottom, boBottomTop);

property Orientation: TBarcodeOrientation;

Description:

Specifies the direction of the barcode symbol. The barcode symbol and its quiet zones (if they are displayed, please read
the ShowQuietZone property about whether or not the quiet zones will be displayed) will be rotated based on the property
value. You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties to specify
the size of these quiet zones in modules.

This property can be one of these values (defined in the pfmxBarcode2D unit):

2D Barcode FMX Components User Manual

188

boLeftRight: Left to right horizontal direction (rotates the barcode symbol 0 degrees counter-clockwise). See
diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

boRightLeft: Right to left horizontal direction (rotates the barcode symbol 180 degrees counter-clockwise). See
diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

boTopBottom: Top to bottom vertical direction (rotates the barcode symbol 270 degrees counter-clockwise). See
diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

boBottomTop: Bottom to top vertical direction (rotates the barcode symbol 90 degrees counter-clockwise). See
diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

A.1.102 Placement
(TBarcodeFmx2D_CompactMatrix)

Specifies how to place symbol characters when encoding the barcode text into a Compact Matrix symbol.

Syntax:

type
TCompactMatrix_Placement = (pmSequence, pmInterlacement);

property Placement: TCompactMatrix_Placement;

2D Barcode FMX Components User Manual

189

Description:

Compact Matrix symbology has two symbol charcacters placement methods as sequence and interlacement. The property
specifies which placement method will be used to generate the Compact Matrix symbol. It can be one of values
pmSequence and pmInterlacement, corresponding to the symbol charcacters placement methods sequence and
interlacement.

A.1.103 ReviseVersion5
(TBarcodeFmx2D_HanXinCode)

Specifies whether to revise the position of alignment pattern for a Han Xin Code version 5 symbol.

Syntax:

property ReviseVersion5: Boolean;

Description:

The property specifies whether to revise the position of alignment pattern for a Han Xin Code version 5 symbol. By default,
it's set to false, if the symbol can be read by your reader, please don't change it.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_HanXinCode" article.

A.1.104 RowHeight
(TBarcodeFmx2D_Code16K)

Specifies the height of each stacked row for a Code 16K stacked barcode symbol, in modules.

Syntax:

property RowHeight: Integer;

Description:

The property specifies the height of each stacked row for a Code 16K barcode symbol, in modules. It should be set to an
integer greater than or equal to 8, and the height of separator bar isn't included. If the property is set to a value less than 8,
the operation will be ignored.

See diagram:

2D Barcode FMX Components User Manual

190

A.1.105 RowHeight
(TBarcodeFmx2D_MicroPDF417)

Specifies the height of each stacked row for a MicroPDF417 stacked barcode symbol, in modules.

Syntax:

type
{ Defined in the pfmxMicroPDF417 unit }
TMicroPDF417_RowHeight = 1 .. 99;

property RowHeight: TMicroPDF417_RowHeight;

Description:

The property specifies the height of each stacked row for a MicroPDF417 barcode symbol, in modules. It should be set to
an integer between 1 and 99 (including the boundaries, defined in the pfmxMicroPDF417 unit). In general, it shall be a
minimum of 2 modules.

See diagram:

A.1.106 RowHeight
(TBarcodeFmx2D_PDF417)

Specifies the height of each stacked row for a PDF417 stacked barcode symbol, in modules.

Syntax:

type
{ Defined in the pfmxPDF417Custom unit }
TPDF417_RowHeight = 1 .. 99;

property RowHeight: TPDF417_RowHeight;

Description:

The property specifies the height of each stacked row for a PDF417 barcode symbol, in modules.

The property should be set to an integer between 1 and 99 (including the boundaries, defined in the pfmxPDF417Custom
unit). In general, it shall be a minimum of 3 modules.

See diagram:

2D Barcode FMX Components User Manual

191

A.1.107 RowHeight
(TBarcodeFmx2D_RSSExpanded)

Specifies the height of each stacked row for an RSS Expanded barcode symbol, in modules.

Syntax:

property RowHeight: Integer;

Description:

For the RSS Expanded (Standard) barcode symbol (the Style property is set to rsStandard), the property specifies the
height of the RSS Expanded (Standard) barcode symbol, in modules. See diagram:

For the RSS Expanded Stacked barcode symbol (the Style property is set to rsStacked), the property specifies the height
of each stacked row for the RSS Expanded Stacked barcode symbol, in modules. See diagram:

The property should be set to an integer greater than or equal to 34.

A.1.108 RowSymbols
(TBarcodeFmx2D_RSSExpanded)

Specifies the number of symbol segments in each row for an RSS Expanded Stacked symbol.

Syntax:

property RowSymbols: Integer;

Description:

The property specifies the number of symbol segments in each row for an RSS Expanded Stacked symbol (the Style
property is set to rsStacked). It's an integer between 2 and 20 (including the boundaries, only even values are valid), the
barcode symbol will be stacked in two to eleven rows based on the total numbers of symbol segments and the number of
symbol segments in each row.

2D Barcode FMX Components User Manual

192

If the RSS Expanded Stacked symbol is used together with a 4-column CC-A or a 4-column CC-B barcode symbol to
create the EAN.UCC composite symbol, the RSS Expanded Stacked symbol shall contain at least four symbol characters
within its top row. In other words, the value of RowSymbols property should be greater than or equal to 4.

See also the "Symbol size" section in the "TBarcodeFmx2D_RSSExpanded" article.

A.1.109 SeparatorBarHeight
(TBarcodeFmx2D_Code16K)

Specifies the height of separator bar for Code 16K barcode symbology, in modules.

Syntax:

property SeparatorRowHeight: Integer;

Description:

The property specifies the height of separator bar for Code 16K barcode symbology, in modules. It's an integer between 1
and 4 (including the boundaries).

The separator bar is horizontal bar separating two rows of a Code 16K barcode symbol, or abutting the top or bottom of
first or last row respectively.

See diagram:

A.1.110 SeparatorRowHeight
(TBarcodeFmx2D_RSS14, TBarcodeFmx2D_RSSExpanded)

Specifies the height of separator pattern row between symbol rows for RSS-14 (Stacked and Stacked Omnidirectional)
and RSS Expanded (Stacked) symbols, in modules.

Also, it sepecifies the height of contiguous separator pattern row between the linear and 2D symbols of an EAN.UCC
Composite symbol which use the RSS symbol (including any style of RSS-14, RSS Limited, or any style of RSS Expanded
symbol) as its linear symbol, in modules.

Syntax:

property SeparatorRowHeight: Integer;

Description:

For the RSS-14 barcode symbols, if the Style property is set to the rsStacked (Stacked style) or

2D Barcode FMX Components User Manual

193

rsStackedOmnidirectional (Stacked Omnidirectional style), the property specifies the height of separator pattern row
between top row and bottom row, in modules. See diagram:

For the RSS Expanded barcode symbols, if the Style property is set to rsStacked (Stacked style), the property specifies
the height of separator pattern row between symbol rows, in modules. See diagram:

If an RSS barcode symbol (including any style of RSS-14, RSS Limited, or any style of RSS Expanded symbol) is used
together with an adjacent 2D symbol to create the EAN.UCC Composite symbol (its Link2D property is set to true), and
the contiguous separator pattern is displayed (its Show2DSeparator property is set to true), the property specifies the
height of contiguous separator pattern too, in modules.

See diagram:

See also the "Composite symbol" section in the "TBarcodeFmx2D_RSS14", "TBarcodeFmx2D_RSSLimited", and
"TBarcodeFmx2D_RSSExpanded" articles.

A.1.111 SeparatorRowHeight
(TBarcodeFmx2D_RSSLimited)

Specify the height of contiguous separator pattern row between the linear and 2D symbols of an EAN.UCC Composite
symbol which use the RSS Limited symbol as its linear symbol, in modules.

Syntax:

2D Barcode FMX Components User Manual

194

property SeparatorRowHeight: Integer;

Description:

If an RSS Limited barcode symbol is used together with an adjacent 2D symbol to create the EAN.UCC Composite
symbol (its Link2D property is set to true), and the contiguous separator pattern is respresented (its Show2DSeparator
property is set to true), the property specifies the height of contiguous separator pattern, in modules.

See diagram:

See also the "Composite symbol" section in the "TBarcodeFmx2D_RSSLimited" article.

A.1.112 Shape
(TBarcodeFmx2D_DataMatrixEcc200)

Specifies which shape of Data Matrix (ECC 200) symbol will be selected to generate the Data Matrix (ECC 200) barcode
symbol.

Syntax:

type
{ Defined in the pfmxDataMatrixEcc200 unit }
TDataMatrixEcc200_Shape = (dsSquare, dsRectangle);

property Shape: TDataMatrixEcc200_Shape;

Description:

There are two shapes of Data Matrix (ECC 200) symbols, square and rectangle. The property specifies which shape of
Data Matrix (ECC 200) symbol will be selected to generate the barcode symbol.

The property can be one of these values (defined in the pfmxDataMatrixEcc200 unit):

dsSquare: Indicates to generate the square symbols. In this case, if the MinSize property value isn't
between dmSize_10_10 and dmSize_144_144 then it's default to dmSize_10_10, and if the MaxSize
property value isn't between dmSize_10_10 and dmSize_144_144 then it's default to dmSize_144_144.

dsRectangle: Indicates to generate the rectangle symbols. In this case, if the MinSize property
value isn't between dmSize_8_18 and dmSize_16_48 then it's default to dmSize_8_18, and if the
MaxSize property value isn't between dmSize_8_18 and dmSize_16_48 then it's default to dmSize_16_48.

See also the "Shapes" section in the "TBarcodeFmx2D_DataMatrixECC2OO" article.

A.1.113 Show2DSeparator

2D Barcode FMX Components User Manual

195

Specifies whether to represent a 2D contiguous separator pattern on top of the RSS-14, RSS Limited, or RSS Expanded
symbols.

Syntax:

property Show2DSeparator: Boolean;

Description:

An RSS barcode symbol (including RSS-14, RSS Limited, and RSS Expanded) can be used together with a CC-A or a
CC-B 2D symbol to create the EAN.UCC composite symbol. A contiguous separator pattern is required between the RSS
and the 2D symbols in an EAN.UCC composite symbol. The property specifies whether to draw the contiguous separator
pattern on top of the RSS symbol, in order to create EAN.UCC composite symbol using the RSS symbol. See digiam (the
color of separator patterns are changed to red in order to accentuate them):

The height of contiguous separator pattern is specified by the SeparatorRowHeight (for RSS-14 and RSS Expanded
components) and SeparatorRowHeight (for the RSS Limited component) property, in modules.

Note, in order to draw the contiguous separator pattern, both the Show2DSeparator and the Link2D properties must be
set to true.

See also the "Composite symbol" section in the "TBarcodeFmx2D_RSS14", "TBarcodeFmx2D_RSSLimited", and
"TBarcodeFmx2D_RSSExpanded" articles.

A.1.114 ShowQuietZone

Specifies whether to draw the leading quiet zone, trailing quiet zone, top quiet zone, and bottom quiet zone.

Syntax:

property ShowQuietZone: Boolean;

Description:

The property specifies whether to draw the leading quiet zone, trailing quiet zone, top quiet zone, and bottom quiet zone. If
the property value is set to true, these quiet zones are drawn. Otherwise, they don't be drawn. And they are drawn using the
color specified by the SpaceColor property if the Inversed property is set to false. Otherwise, they are drawn using the
color specified by the BarColor property. See diagram (the SpaceColor property value is set to claSilver in order to
accentuate the quiet zones):

2D Barcode FMX Components User Manual

196

You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties to specify the
size of these quiet zones in modules.

For the TBarcodeFmx2D_Code16K barcode components, the leading and trailing quiet zones (their size is specified by
LeadingQuietZone and TrailingQuietZone properties) will be drawn always, even if the ShowQuietZone property value is
set to false. See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

A.1.115 SpaceColor

Specifies the color for all spaces or light modules in the barcode symbol, By default, it's claWhite.

Syntax:

property SpaceColor: TAlphaColor;

Description:

For the Matrix 2D barcode symbologies, including TBarcodeFmx2D_AztecCode, TBarcodeFmx2D_AztecRunes,
TBarcodeFmx2D_DataMatrix, TBarcodeFmx2D_DataMatrixECC200, TBarcodeFmx2D_HanXinCode,
TBarcodeFmx2D_GridMatrix, TBarcodeFmx2D_CompactMatrix, TBarcodeFmx2D_QRCode,
TBarcodeFmx2D_MaxiCode, and TBarcodeFmx2D_MicroQRCode, the property specifies the color of every light module
(background color) in matrix symbol if the Inversed property is set to false. Otherwise, it specifies the color of every dark
module. The module is single cell in the matrix symbol used to encode one bit data, nominally a suqare shape, in
MaxiCode symbology, it's a regular hexagonal shape.

F or Stacked 2D barcode symbologies and Linear 1D barcode symbologies, including TBarcodeFmx2D_Code16K,
TBarcodeFmx2D_PDF417, TBarcodeFmx2D_MicroPDF417, TBarcodeFmx2D_RSS14,
TBarcodeFmx2D_RSSLimited, and TBarcodeFmx2D_RSSExpanded, the property specifies the color for all spaces
(background color) in the barcode symbol if the Inversed property is set to false. Otherwise, it specifies the color for all
bars.

Also, when the leading quiet zone, trailing quiet zone, top quiet zone, and bottom quiet zone are drawn (the
ShowQuietZone property is set to true), the color specified by this SpaceColor property will be used to draw them if the

2D Barcode FMX Components User Manual

197

Inversed property is set to false. Otherwise, the color specified by the BarColor property will be used.

A.1.116 StartWidth
(TBarcodeFmx2D_CompactMatrix)

Specifies the width of start pattern for a Compact Matrix barcode symbol, in modules.

Syntax:

property StartWidth: Integer;

Description:

The property specifies the width of start pattern for a Compact Matrix barcode symbol, in modules. It should be set to an
integer greater than or equal to 2. If the property is set to a value less than 2, an exception will be raised.

See diagram:

A.1.117 StopWidth
(TBarcodeFmx2D_CompactMatrix)

Specifies the width of stop pattern for a Compact Matrix barcode symbol, in modules.

Syntax:

property StopWidth: Integer;

Description:

The property specifies the width of stop pattern for a Compact Matrix barcode symbol, in modules. It should be set to an
integer greater than or equal to 2. If the property is set to a value less than 2, an exception will be raised.

See diagram:

2D Barcode FMX Components User Manual

198

A.1.118 Stretch

Specifies whether to reduce/stretch the barcode symbol to specified size.

Syntax:

property Stretch: Boolean;

Description:

The property specifies whether to reduce/stretch the barcode symbol to fit the size specified by BarcodeWidth and
BarcodeHeight properties. The barcode symbol together with its quiet zones (if they are displayed) will be
reduced/stretched if the property is set to true. You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and
BottomQuietZone properties to specify the size of these quiet zones in modules. And use the ShowQuietZone property to
specify whether to display these quiet zones.

If the property is set to false, the barcode symbol will not be reduced/stretched. The values of BarcodeWidth and
BarcodeHeight properties will be ignored.

The barcode symbol width and height will be calculated based on the Module property value.

You can get the width and height by using the Size method.

If the property is set to true, the barcode symbol will be reduced/stretched to fit the size specified by BarcodeWidth
and BarcodeHeight properties.

The BarcodeWidth property specifies the width of barcode symbol. If the property value is less than or equal to zero,
it specifies the right margin of the barcode symbol (the Orientation property is set to boLeftRight or boRightLeft), or
the bottom margin of the barcode symbol (the Orientation property is set to boTopBottom or boBottomTop). See
also the BarcodeWidth property. See diagram:

The BarcodeHeight property specifies the height of barcode symbol. If the property value is less than or equal to
zero, it specifies the bottom margin of the barcode symbol (the Orientation property is set to boLeftRight or
boRightLeft), or the right margin of the barcode symbol (the Orientation property is set to boTopBottom or
boBottomTop). See also the BarcodeHeight property. See diagram:

2D Barcode FMX Components User Manual

199

A.1.119 StretchOrder
(TBarcodeFmx2D_CompactMatrix)

Specifies the priority order of selecing appropriate symbol size for a Compact Matrix barcode symbol.

Syntax:

type
{ Defined in the pfmxCompactMatrix unit }
TCompactMatrix_StretchOrder = (soVersionSegment, soSegmentVersion, soFixAspect,
soFixAspectWithQuietZones);

property StretchOrder: TCompactMatrix_StretchOrder;

Description:

There are 32 vertical sizes of Compact Matrix symbol, referred to as version 1 to 32, in increasing order of symbol height
and data capacity. In horizontal orientation, each Compact Matrix symbol consists of an array of segments with a minimum
of 1 segment (maximum 32 segments).

The minimum version (specified by the MinVersion property) and the minimum number of segments (specified by the
MinSegments property) indicates the minimum symbol size for a Compact Matrix barcode symbol. The maximum version
(specified by the MaxVersion property) and the maximum number of segments (specified by the MaxSegments property)
indicates the maximum symbol size for the Compact Matrix barcode symbol. The property specifies a priority order in
order to automatically select the symbol size. According to the priority order, the first symbol size (version and number of
segments) that accommodates the barcode text will be automatically selected between the minimum symbol size and the
maximum symbol size.

The property can be one of these values (defined in the pfmxCompactMatrix unit):

soVersionSegment: If the Compact Matrix symbol that use minimum symbol size (specified by the MinVersion and
MinSegments properties) cannot accommodate the barcode text, the symbol version will be increased firstly until it
reachs the maximum value (specified by the MaxVersion property) or the barcode text is accommodated by the

2D Barcode FMX Components User Manual

200

symbol. If the version has reached the maximum value (specified by the MaxVersion property) but the barcode text
cannot yet be accommodated, the number of segments will be increased and the version will be reset to minimum
value (specified by the MinVersion property). Repeat these until the barcode text is accommodated by the symbol,
or not only does the version reach maximum value (specified by the MaxVersion property), but also the number of
segments reachs maximum number of segments (specified by the MaxSegments property), in this case (the
barcode text cannot always be accommodated), an OnInvalidLength (the barcode text is specified in the Barcode
property) or OnInvalidDataLength (the barcode text is specified in the Data property) event will occur.

soSegmentVersion: If the Compact Matrix symbol that use minimum symbol size (specified by the MinVersion and
MinSegments properties) cannot accommodate the barcode text, the number of segments will be increased firstly
until it reachs the maximum number of segments (specified by the MaxSegments property) or the barcode text is
accommodated by the symbol. If the number of segments has reached the maximum number of segments
(specified by the MaxSegments property) but the barcode text cannot yet be accommodated, the version will be
increased and the number of segments will be reset to minimum number of segments (specified by the
MinSegments property). Repeat these until the barcode text is accommodated by the symbol, or not only does the
number of segments reach maximum number of segments (specified by the MaxSegments property), but also the
version reachs maximum value (specified by the MaxVersion property), in this case (the barcode text cannot always
be accommodated), an OnInvalidLength (the barcode text is specified in the Barcode property) or
OnInvalidDataLength (the barcode text is specified in the Data property) event will occur.

soFixAspect: An overall aspect ratio is specified by the minimum version (specified by the MinVersion property)
and minumum number of segments (specified by the MinSegments property), the ratio is height to width of the
symbol excluding quiet zones. Between the minimum symbol size (specified by the MinVersion and MinSegments
properties) and the maximum symbol size (specified by the MaxVersion and MaxSegments properties), only symbol
sizes that they approximately match the aspect ratio will be used. According to the data capacity, in increasing order
of recovery capacity, the smallest symbol size that accommodates the barcode text will be automatically selected. If
the barcode text cannot be accommodated by the maximum symbol size (specified by the MaxVersion and
MaxSegments properties), an OnInvalidLength (the barcode text is specified in the Barcode property) or
OnInvalidDataLength (the barcode text is specified in the Data property) event will occur.

soFixAspectWithQuietZones: An overall aspect ratio is specified by the minimum version (specified by the
MinVersion property) and minumum number of segments (specified by the MinSegments property), the ratio is
height to width of the symbol including quiet zones. Between the minimum symbol size (specified by the MinVersion
and MinSegments properties) and the maximum symbol size (specified by the MaxVersion and MaxSegments
properties), only symbol sizes that they approximately match the aspect ratio will be used. According to the data
capacity, in increasing order of recovery capacity, the smallest symbol size that accommodates the barcode text will
be automatically selected. If the barcode text cannot be accommodated by the maximum symbol size (specified by
the MaxVersion and MaxSegments properties), an OnInvalidLength (the barcode text is specified in the Barcode
property) or OnInvalidDataLength (the barcode text is specified in the Data property) event will occur.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_CompactMatrix" article.

A.1.120 StretchOrder
(TBarcodeFmx2D_MicroPDF417)

Specifies the priority order of selecing appropriate symbol size for a MicroPDF417 barcode symbol.

Syntax:

2D Barcode FMX Components User Manual

201

type
{ Defined in the pfmxMicroPDF417 unit }
TMicroPDF417_StretchOrder = (soRowColumn, soColumnRow, soRowPrior,
soColumnPrior, soGlobal_1, soGlobal_2, soGlobal_3, soGlobal_4);

property StretchOrder: TMicroPDF417_StretchOrder;

Description:

The property specifies a priority order in order to automatically select the symbol size for a MicroPDF417 barcode
symbol. According to the priority order, the first symbol size that accommodates the barcode text will be automatically
selected between the minimum symbol size (specified by the MinSize property) and the maximum symbol size (specified
by the MaxSize property).

The property can be one of these values (defined in the pfmxMicroPDF417 unit):

soRowColumn: If the MicroPDF417 symbol that use minimum symbol size cannot accommodate the barcode text,
the number of rows will be increased firstly until it reachs the maximum number of rows (specified by the MaxSize
property) or the barcode text is accommodated by the symbol. If the number of rows has reached the maximum
number of rows (specified by the MaxSize property) but the barcode text cannot yet be accommodated, the number
of columns will be increased and the number of rows will be reset to minimum number of rows (specified by the
MinSize property). Repeat these until the barcode text is accommodated by the symbol, or the symbol size reachs
maximum symbol size (specified by the MaxSize property), in this case (tha barcode text cannot always be
accommodated), an OnInvalidLength (the barcode text is specified in the Barcode property) or OnInvalidDataLength
(the barcode text is specified in the Data property) event will occur. See diagram:

soColumnRow: If the MicroPDF417 symbol that use minimum symbol size cannot accommodate the barcode text,
the number of columns will be increased firstly until it reachs the maximum number of columns (specified by the
MaxSize property) or the barcode text is accommodated by the symbol. If the number of columns has reached the
maximum number of columns (specified by the MaxSize property) but the barcode text cannot yet be
accommodated, the number of rows will be increased and the number of columns will be reset to minimum number
of columns (specified by the MinSize property). Repeat these until the barcode text is accommodated by the
symbol, or the symbol size reachs maximum symbol size (specified by the MaxSize property), in this case (tha
barcode text cannot always be accommodated), an OnInvalidLength (the barcode text is specified in the Barcode
property) or OnInvalidDataLength (the barcode text is specified in the Data property) event will occur. See diagram:

2D Barcode FMX Components User Manual

202

soRowPrior: If the MicroPDF417 symbol that use minimum symbol size cannot accommodate the barcode text, the
number of rows will be increased firstly until it reachs the maximum number of rows defined by the specification or
the barcode text is accommodated by the symbol. If the number of rows has reached the maximum number of rows
defined by the specification but the barcode text cannot yet be accommodated, the number of columns will be
increased and the number of rows will be reset to minimum number of rows defined by the specification. Repeat
these until the barcode text is accommodated by the symbol, or the symbol size reachs maximum symbol size
(specified by the MaxSize property), in this case (tha barcode text cannot always be accommodated), an
OnInvalidLength (the barcode text is specified in the Barcode property) or OnInvalidDataLength (the barcode text is
specified in the Data property) event will occur. See diagram:

soColumnPrior: If the MicroPDF417 symbol that use minimum symbol size cannot accommodate the barcode text,
the number of columns will be increased firstly until it reachs the maximum number of columns defined by the
specification or the barcode text is accommodated by the symbol. If the number of columns has reached the
maximum number of columns defined by the specification but the barcode text cannot yet be accommodated, the
number of rows will be increased and the number of columns will be reset to minimum number of columns defined by
the specification. Repeat these until the barcode text is accommodated by the symbol, or the symbol size reachs
maximum symbol size (specified by the MaxSize property), in this case (tha barcode text cannot always be
accommodated), an OnInvalidLength (the barcode text is specified in the Barcode property) or OnInvalidDataLength
(the barcode text is specified in the Data property) event will occur. See diagram:

2D Barcode FMX Components User Manual

203

soGlobal_1: All available symbol sizes will be sorted in ascending order of data capacity. If the data capacitoies of
any two or three symbol sizes are equivalent, only smaller one in number of rows will be sorted. According to the
order, the smallest symbol size that accommodates the barcode text will be automatically selected between the
minimum symbol size (specified by the MinSize property) and the maximum symbol size (specified by the MaxSize
property). The order is listed below:

mpSize_1_11, mpSize_3_6, mpSize_1_14, mpSize_2_8, mpSize_1_17, mpSize_1_20, mpSize_2_11,
mpSize_3_10, mpSize_1_24, mpSize_3_12, mpSize_2_14, mpSize_1_28, mpSize_2_17, mpSize_2_20,
mpSize_4_12, mpSize_2_23, mpSize_3_20, mpSize_2_26, mpSize_4_15, mpSize_3_26, mpSize_4_20,
mpSize_3_32, mpSize_3_38, mpSize_4_26, mpSize_3_44, mpSize_4_32, mpSize_4_38, mpSize_4_44.

If tha barcode text cannot be accommodated in the maximum symbol size (specified by the MaxSize property), an
OnInvalidLength (the barcode text is specified in the Barcode property) or OnInvalidDataLength (the barcode text is
specified in the Data property) event will occur.

soGlobal_2: All available symbol sizes will be sorted in ascending order of data capacity. If the data capacitoies of
any two or three symbol sizes are equivalent, only smaller one in number of columns will be sorted. According to the
order, the smallest symbol size that accommodates the barcode text will be automatically selected between the
minimum symbol size (specified by the MinSize property) and the maximum symbol size (specified by the MaxSize
property). The order is listed below:

mpSize_1_11, mpSize_3_6, mpSize_1_14, mpSize_4_4, mpSize_3_8, mpSize_4_6, mpSize_2_11,
mpSize_3_10, mpSize_1_24, mpSize_4_8, mpSize_2_14, mpSize_1_28, mpSize_4_10, mpSize_2_20,
mpSize_4_12, mpSize_2_23, mpSize_3_20, mpSize_2_26, mpSize_4_15, mpSize_3_26, mpSize_4_20,
mpSize_3_32, mpSize_3_38, mpSize_4_26, mpSize_3_44, mpSize_4_32, mpSize_4_38, mpSize_4_44.

If tha barcode text cannot be accommodated in the maximum symbol size (specified by the MaxSize property), an
OnInvalidLength (the barcode text is specified in the Barcode property) or OnInvalidDataLength (the barcode text is
specified in the Data property) event will occur.

soGlobal_3: All available symbol sizes will be sorted in ascending order of data capacity. If the data capacitoies of
any two symbol sizes are equivalent, only smaller one in number of rows will be sorted. If the data capacitoies of any
three symbol sizes are equivalent, only middle one in number of rows and columns will be sorted. According to the
order, the smallest symbol size that accommodates the barcode text will be automatically selected between the
minimum symbol size (specified by the MinSize property) and the maximum symbol size (specified by the MaxSize
property). The order is listed below:

mpSize_1_11, mpSize_3_6, mpSize_1_14, mpSize_2_8, mpSize_1_17, mpSize_1_20, mpSize_2_11,
mpSize_3_10, mpSize_1_24, mpSize_3_12, mpSize_2_14, mpSize_1_28, mpSize_3_15, mpSize_2_20,

2D Barcode FMX Components User Manual

204

mpSize_4_12, mpSize_2_23, mpSize_3_20, mpSize_2_26, mpSize_4_15, mpSize_3_26, mpSize_4_20,
mpSize_3_32, mpSize_3_38, mpSize_4_26, mpSize_3_44, mpSize_4_32, mpSize_4_38, mpSize_4_44.

If tha barcode text cannot be accommodated in the maximum symbol size (specified by the MaxSize property), an
OnInvalidLength (the barcode text is specified in the Barcode property) or OnInvalidDataLength (the barcode text is
specified in the Data property) event will occur.

soGlobal_4: All available symbol sizes will be sorted in ascending order of data capacity. If the data capacitoies of
any two symbol sizes are equivalent, only smaller one in number of columns will be sorted. If the data capacitoies of
any three symbol sizes are equivalent, only middle one in number of rows and columns will be sorted. According to
the order, the smallest symbol size that accommodates the barcode text will be automatically selected between the
minimum symbol size (specified by the MinSize property) and the maximum symbol size (specified by the MaxSize
property). The order is listed below:

mpSize_1_11, mpSize_3_6, mpSize_1_14, mpSize_4_4, mpSize_3_8, mpSize_4_6, mpSize_2_11,
mpSize_3_10, mpSize_1_24, mpSize_4_8, mpSize_2_14, mpSize_1_28, mpSize_3_15, mpSize_2_20,
mpSize_4_12, mpSize_2_23, mpSize_3_20, mpSize_2_26, mpSize_4_15, mpSize_3_26, mpSize_4_20,
mpSize_3_32, mpSize_3_38, mpSize_4_26, mpSize_3_44, mpSize_4_32, mpSize_4_38, mpSize_4_44.

If tha barcode text cannot be accommodated in the maximum symbol size (specified by the MaxSize property), an
OnInvalidLength (the barcode text is specified in the Barcode property) or OnInvalidDataLength (the barcode text is
specified in the Data property) event will occur.

See also the "Symbol sizes" section in the "TBarcodeFmx2D_MicroPDF417" article.

A.1.121 StretchOrder
(TBarcodeFmx2D_PDF417)

Specifies the priority order of selecing appropriate symbol size for a PDF417 barcode symbol.

Syntax:

type
{ Defined in the pfmxPDF417 unit }
TPDF417_StretchOrder = (soRowColumn, soColumnRow, soFixAspect,
soFixAspectWithQuietZones);

property StretchOrder: TPDF417_StretchOrder;

Description:

The minimum number of rows (specified by the MinRows property) and the minimum number of columns (specified by the
MinColumns property) indicates the minimum symbol size for a PDF417 barcode symbol. The maximum number of rows
(specified by the MaxRows property) and the maximum number of columns (specified by the MaxColumns property)
indicates the maximum symbol size for the PDF417 barcode symbol. The property specifies a priority order in order to
automatically select the symbol size. According to the priority order, the first symbol size (number of rows and columns)
that accommodates the barcode text will be automatically selected between the minimum symbol size and the maximum
symbol size.

The property can be one of these values (defined in the pfmxPDF417 unit):

2D Barcode FMX Components User Manual

205

soRowColumn: If the PDF417 symbol that use minimum symbol size (specified by the MinColumns and MinRows
properties) cannot accommodate the barcode text, the number of stacked rows will be increased firstly until it
reachs the maximum number of stacked rows (specified by the MaxRows property) or the barcode text is
accommodated by the symbol. If the number of stacked rows has reached the maximum number of stacked rows
(specified by the MaxRows property) but the barcode text cannot yet be accommodated, the number of columns will
be increased and the number of stacked rows will be reset to minimum number of stacked rows (specified by the
MinRows property). Repeat these until the barcode text is accommodated by the symbol, or not only does the
number of rows reach maximum number of stacked rows (specified by the MaxRows property), but also the number
of columns reachs maximum number of columns (specified by the MaxColumns property), in this case (the barcode
text cannot always be accommodated), an OnInvalidLength (the barcode text is specified in the Barcode property)
or OnInvalidDataLength (the barcode text is specified in the Data property) event will occur. See diagram:

soColumnRow: If the PDF417 symbol that use minimum symbol size (specified by the MinColumns and MinRows
properties) cannot accommodate the barcode text, the number of columns will be increased firstly until it reachs the
maximum number of columns (specified by the MaxColumns property) or the barcode text is accommodated by the
symbol. If the number of columns has reached the maximum number of columns (specified by the MaxColumns
property) but the barcode text cannot yet be accommodated, the number of stacked rows will be increased and the
number of columns will be reset to minimum number of columns (specified by the MinColumns property). Repeat
these until the barcode text is accommodated by the symbol, or not only does the number of columns reach
maximum number of columns (specified by the MaxColumns property), but also the number of stacked rows reachs
maximum number of stacked rows (specified by the MaxRows property), in this case (the barcode text cannot
always be accommodated), an OnInvalidLength (the barcode text is specified in the Barcode property) or
OnInvalidDataLength (the barcode text is specified in the Data property) event will occur. See diagram:

soFixAspect: An overall aspect ratio is specified by the minimum number of stacked rows (specified by the
MinRows property) and minumum number of columns (specified by the MinColumns property), the ratio is height to
width of the symbol excluding quiet zones. Between the minimum symbol size (specified by the MinColumns and
MinRows properties) and the maximum symbol size (specified by the MaxColumns and MaxRows properties), only
symbol sizes that they approximately match the aspect ratio will be used. According to the data capacity, in

2D Barcode FMX Components User Manual

206

increasing order of recovery capacity, the smallest symbol size that accommodates the barcode text will be
automatically selected. If the barcode text cannot be accommodated by the maximum symbol size (specified by the
MaxColumns and MaxRows properties), an OnInvalidLength (the barcode text is specified in the Barcode property)
or OnInvalidDataLength (the barcode text is specified in the Data property) event will occur.

soFixAspectWithQuietZones: An overall aspect ratio is specified by the minimum number of stacked rows
(specified by the MinRows property) and minumum number of columns (specified by the MinColumns property), the
ratio is height to width of the symbol including quiet zones. Between the minimum symbol size (specified by the
MinColumns and MinRows properties) and the maximum symbol size (specified by the MaxColumns and MaxRows
properties), only symbol sizes that they approximately match the aspect ratio will be used. According to the data
capacity, in increasing order of recovery capacity, the smallest symbol size that accommodates the barcode text will
be automatically selected. If the barcode text cannot be accommodated by the maximum symbol size (specified by
the MaxColumns and MaxRows properties), an OnInvalidLength (the barcode text is specified in the Barcode
property) or OnInvalidDataLength (the barcode text is specified in the Data property) event will occur.

See also the "Symbol size" section in the "TBarcodeFmx2D_PDF417" article.

A.1.122 Style
(TBarcodeFmx2D_RSS14)

Specifies which style (version) of RSS-14 symbols will be used.

Syntax:

type
{ Defined in the pfmxRss14 unit }
TRSS14_Style = (rsStandard, rsTruncated, rsStacked, rsStackedOmnidirectional);

property Style: TRSS14_Style;

Description:

There are four styles (versions) of RSS-14 symbols, referred to as RSS-14 (Standard), RSS-14 Truncated, RSS-14
Stacked, and RSS-14 Stacked Omnidirectional respectively. The property specifies which style (version) will be used.

The property can be one of these values (defined in the pfmxRss14 unit):

rsStandard: Indicates to generate the standard style RSS-14 symbol. It encodes the full 14-digit EAN.UCC item
identification (Global Trade Item Numbers, GTINs) in a symbol that can be omnidirectionally scanned by suitably
configured point-of-sale laser scanners.

rsTruncated: Indicates to generate the RSS-14 Truncated barcode symbol. It is structured and encoded in the
same way as the standard RSS-14 format, except its height is reduced to a 13 modules minimum. It may be used
for small items, instead of RSS Limited. It may also be used when the four-column 2D component is desired in order
to minimize the height of an EAN.UCC Composite symbol.

RSS-14 Truncated is designed to be read by scanners such as wands, handheld lasers, and linear and 2D imagers.
It cannot be read efficiently by omnidirectional flat-bed and presentation scanners.

2D Barcode FMX Components User Manual

207

rsStacked: Indicates to generate the RSS-14 Stacked barcode symbol. It is an RSS-14 Truncated two-row format.
It may be used for small items instead of RSS Limited when the available space is too narrow for RSS Limited.
Moreover, the narrower width of RSS-14 Stacked might allow for a larger module width and potentially higher print
quality. However, RSS Limited or RSS-14 Truncated should be used in preference to the stacked format whenever
space permits without reducing module width, as they are easier to scan with a wand or linear scanner.

RSS-14 Stacked is designed to be read by scanners such as wands, handheld lasers, and linear and 2D imagers. It
cannot be read efficiently by omnidirectional flat-bed and presentation scanners.

rsStackedOmnidirectional: Indicates to generate the RSS-14 Stacked Omnidirectional barcode symbol. It is a full
height RSS-14 two-row format. It can be used instead of RSS-14 for omnidirectional scanning applications where
the different aspect ratio is needed.

See also the "Styles" section in the "TBarcodeFmx2D_RSS14" article.

A.1.123 Style
(TBarcodeFmx2D_RSSExpanded)

Specifies which style (version) of RSS Expanded symbols will be used.

Syntax:

type
{ Defined in the pfmxRssExpanded unit }
TRSSExpanded_Style = (rsStandard, rsStacked);

property Style: TRSSExpanded_Style;

Description:

There are two styles (versions) of RSS Expanded symbols, referred to as RSS Expanded (Standard) and RSS Expanded
Stacked respectively. The property specifies which style (version) of RSS Expanded symbol will be used.

The property can be one of these values (defined in the pfmxRssExpanded unit):

rsStandard: Indicates to generate the standard style RSS Expanded symbol. It is a single row, variable length
linear symbology. It can identify small items and carry more information than the current EAN/UPC barcode.

2D Barcode FMX Components User Manual

208

rsStacked: Indicates to generate the RSS Expanded Stacked symbol. It is an RSS Expanded multi-row format. It
may be used when the symbol area or print mechanism is not wide enough to accommodate the full single row
symbol.

See also the "Styles" section in the "TBarcodeFmx2D_RSSExpanded" article.

A.1.124 SymbolMode
(TBarcodeFmx2D_AztecCode)

Specifies which symbol format and size will be automatically selected to generate an Azec Code symbol.

Syntax:

type
{ Defined in the pfmxAztecCode unit }
TAztecCode_SymbolMode = (smNormal, smCompact, smFullRange, smProgram, smAll);

property SymbolMode: TAztecCode_SymbolMode;

Description:

The property specifies which Aztec Code symbol formats and sizes will be automatically selected between minimum and
maximum symbol sizes specified by corresponding MinSize and MaxSize properties, depending on the length of barcode
text.

The property can be one of these values (defined in the pfmxAztecCode unit):

smNormal: Only the symbol sizes that they are useful for data encoding operation, including all compact symbol
sizes (azSize_15Compact, azSize_19Compact, azSize_23Compact, and azSize_27Compact), and full range
symbol sizes from azSize_31 to azSize_151.

smCompact: Only the symbol sizes in compact format, including the azSize_15Compact, azSize_19Compact,
azSize_23Compact, and azSize_27Compact.

smFullRange: Only the symbol sizes in full range format, including the azSize_19, azSize_23, azSize_27, and
azSize_31 to azSize_151.

smProgram: Only the symbol sizes that they are useful for reader initialization, including azSize_15Compact,
azSize_19, azSize_23, azSize_27, and full range symbol sizes from azSize_31 to azSize_109. Note, in order to
create a reader initialization symbol, a "\p" escape sequence shoule be placed into the barcode text, and the
AllowEscape property should be set to true.

smAll: All symbol sizes, including compact and full range formats.

See also the "Formats" and "Symbol sizes" sections in the "TBarcodeFmx2D_AztecCode" article.

2D Barcode FMX Components User Manual

209

A.1.125 TopMargin

Specifies the top margin of the barcode symbol in pixels.

Syntax:

property TopMargin: Integer;

Description:

Specifies the margin between the topmost of the barcode symbol and the top side of the TImage control that is specified
by the Image property, in pixels.

If the quiet zones are displayed (please read the ShowQuietZone property about whether or not the quiet zones will be
displayed), they are included in the barcode symbol. See diagram (the SpaceColor property value is set to claSilver in
order to accentuate the quiet zones):

It is set using the following formula:

The Orientation property is set to boLeftRight:

It is the margin between the top of the barcode symbol and the top side of the TImage control.

See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

The Orientation property is set to boRightLeft:

It is the margin between the bottom of the barcode symbol and the top side of the TImage control.

See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

The Orientation property is set to boTopBottom:

2D Barcode FMX Components User Manual

210

It is the margin between the beginning of the barcode symbol and the top side of the TImage control.

See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

The Orientation property is set to boBottomTop:

It is the margin between the end of the barcode symbol and the top side of the TImage control.

See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

Note:

For the TBarcodeFmx2D_Code16K barcode components, the leading quiet zone and the trailing quiet zone are included
always, even if the ShowQuietZone is set to false. See diagram (the SpaceColor property value is set to claSilver in order
to accentuate the quiet zones):

A.1.126 TopQuietZone

Specifies the vertical height of the top quiet zone in modules.

Syntax:

property TopQuietZone: Integer;

2D Barcode FMX Components User Manual

211

Description:

Specifies the vertical height of the top quiet zone in modules. The quiet zone is drawn using the color specified by the
SpaceColor property if the Inversed property is set to false. Otherwise, it's drawn using the color specified by the BarColor
property. See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

This property is useful only when the ShowQuietZone property value is set to true.

A.1.127 TotalHeight
(TBarcodeFmx2D_RSS14, TBarcodeFmx2D_RSSLimited)

Specifies the total height for an RSS-14 or an RSS Limited symbol, in modules.

Syntax:

property TotalHeight: Integer;

Description:

The property specifies the total height for an RSS-14 or an RSS Limited symbol, in modules.

For all styles of RSS-14 symbol, and RSS Limited symbol, if both the Link2D and Show2DSeparator properties are set to
Ture, a contiguous separator pattern is drawn and its minimum height is 1 module (the pattern height can be specified by
the SeparatorRowHeight property). The height of contiguous separator pattern is included in the value of TotalHeight
property.

For the RSS-14 Stacked and RSS-14 Stacked Omnidirectional symbols, the height of separator pattern between symbol
rows (specified by the SeparatorRowHeight property) is included.

The property is set using the following formula:

For the RSS-14 symbols:

RSS-14 (Standard): Appropriate TotalHeight value should be set in order to ensure that the height of symbol
row is greater than or equal to 33 modules. In other words, if the contiguous separator pattern isn't displayed,
minimum value of the property is 33 modules. Otherwise, it's 33 modules plus height of the contiguous
separator pattern (specified by the SeparatorRowHeight property). See diagram:

RSS-14 Truncated: Appropriate TotalHeight value should be set in order to ensure that the height of symbol

2D Barcode FMX Components User Manual

212

row is greater than or equal to 13 modules. In other words, if the contiguous separator pattern isn't displayed,
minimum value of the property is 13 modules. Otherwise, it's 13 modules plus height of the contiguous
separator pattern (specified by the SeparatorRowHeight property). See diagram:

RSS-14 Stacked: Appropriate TotalHeight value should be set in order to ensure that the sum of each
symbol row's height is greater than or equal to 12 modules. In other words, if the contiguous separator pattern
isn't displayed, minimum value of the property is 12 modules plus the height of separator pattern between two
rows (specified by the SeparatorRowHeight property). Otherwise, it's 12 modules plus the height of separator
pattern between two rows (specified by the SeparatorRowHeight property), and plus height of the contiguous
separator pattern (specified by the SeparatorRowHeight property too). See diagram:

RSS-14 Stacked Omnidirectional: Appropriate TotalHeight value should be set in order to ensure that the
sum of each symbol row's is greater than or equal to 66 modules. In other words, if the contiguous separator
pattern isn't displayed, minimum value of the property is 66 modules plus 3 times height of separator pattern
between two rows (specified by the SeparatorRowHeight property). Otherwise, it's 66 modules plus the 3
times height of separator pattern between two rows (specified by the SeparatorRowHeight property), and plus
height of the contiguous separator pattern (specified by the SeparatorRowHeight property too). See diagram:

For the RSS Limited symbols, appropriate TotalHeight value should be set in order to ensure that the height of
symbol row is greater than or equal to 10 modules. In other words, if the contiguous separator pattern isn't
displayed, minimum value of the property is 10 modules. Otherwise, it's 10 modules plus height of the contiguous
separator pattern (specified by the SeparatorRowHeight property). See diagram:

See also the "Symbol size" and "Composite symbol" sections in the "TBarcodeFmx2D_RSS14" and
"TBarcodeFmx2D_RSSLimited" articles.

A.1.128 TrailingQuietZone

Specifies the horizontal width of the trailing quiet zone in modules.

Syntax:

property TrailingQuietZone: Integer;

Description:

2D Barcode FMX Components User Manual

213

Specifies the horizontal width of the trailing quiet zone in modules. The quiet zone is drawn using the color specified by the
SpaceColor property if the Inversed property is set to false. Otherwise, it's drawn using the color specified by the BarColor
property. See diagram (the SpaceColor property value is set to claSilver in order to accentuate the quiet zones):

This property is useful only when the ShowQuietZone property value is set to true or the barcode symbology is a
TBarcodeFmx2D_Code16K symbol.

For the TBarcodeFmx2D_Code16K barcode component, the trailing quiet zone is drawn always, even if the
ShowQuietZone property value is set to false. See diagram (the SpaceColor property value is set to claSilver in order to
accentuate the quiet zones):

A.1.129 UseECIDescriptor
(TBarcodeFmx2D_MicorPDF417)

Specifies whether to use the optional ECI Descriptor in a MicroPDF417 barcode symbol, in order to efficiently encode a
single Transformation ECI sequence at the start of barcode text.

Syntax:

property UseECIDescriptor: Boolean;

Description:

Because MicroPDF417 is intended for applications where symbol size is critical, it is expected that MicroPDF417 will
frequently be used in conjunction with a Transformation ECI appropriate for the data requirements of the application.
MicroPDF417 supports efficient encoding of a single Transformation ECI sequence at the start of each data stream by
using an optional ECI Descriptor that can be encoded at the start of the first symbol of each MicroPDF417-encoded data
stream. The property specifies whether to use the ECI Descriptor in a MicroPDF417 symbol.

This Transformation ECI co-exists with the Interpretative ECI (whether default or explicitly encoded) currently in effect,
since Interpretative ECIs and Transformation ECIs have independent scopes.

Please use the escape sequence \e[<ECI_Number>] to place a Transformation ECI at the beginning of the barcode text
(at the start of the symbol or at the start of the first symbol of a structured append series). If the property is set to true, the
Transformation ECI sequence will be ecncoded as an ECI Descriptor. Otherwist, it will be encoded using the standard ECI
encoding method.

2D Barcode FMX Components User Manual

214

See also the "Extended Channel Interpretation (ECI)" section in the "TBarcodeFmx2D_MicroPDF417" article.

A.2 TSaveFmx2D

A.2.1 Barcode2D
(TSaveFmx2D)

Links a TBarcodeFmx2D component to a TSaveFmx2D component in order to save the barcode symbol to a picture file.

Syntax:

property Barcode2D: TBarcodeFmx2D;

Description:

Use the Barcode2D property to specify a TBarcodeFmx2D component such as the TBarcodeFmx2D_QRCode, the
TBarcodeFmx2D_PDF417, and the TBarcodeFmx2D_RSS14. Then execute the Save method will save the barcode
symbol specified by the 2D barcode component to a picture file.

The TBarcodeFmx2D_MaxiCode component is not supported now.

A.2.2 ColorDepth
(TSaveFmx2D_Bmp)

Specifies the color depth of a Bitmap image (BMP) file for TSaveFmx2D_Bmp component.

Syntax:

type
{ Defined in the pfmxSave2D_Bmp unit }
TBmpColorDepth = (bcdColors_01b, bcdColors_04b, bcdColors_08b, bcdColors_12b,
bcdColors_15b, bcdColors_16b, bcdColors_24b, bcdColors_32b);

property Format: TBmpColorDepth;

Description:

Color depth, also known as bit depth, pixel format, is either the number of bits used to indicate the color of a single pixel. In
a Bitmap image (BMP) file, the pixels can be defined by a varying number of bits. The property specifies which pixel
format will be used to save a barcode symbol to a Bitmap image (BMP) file. It can be one of these value (defined in the
pfmxSave2D_Bmp unit):

bcdColors_01b: Uses the 1-bit per pixel (1bpp) format. It supports 2 distinct colors (for example: black and white)
and stores 8 pixels per 1 byte. Each pixel is an 1-bit index into a table of up to 2 colors.

bcdColors_02b: Uses the 2-bit per pixel (2bpp) format. It supports 4 distinct colors and stores 4 pixels per 1 byte.

2D Barcode FMX Components User Manual

215

Each pixel value is a 2-bit index into a table of up to 4 colors.

bcdColors_04b: Uses the 4-bit per pixel (4bpp) format. It supports 16 distinct colors and stores 2 pixels per 1 byte.
Each pixel value is a 4-bit index into a table of up to 16 colors.

bcdColors_08b: Uses the 8-bit per pixel (8bpp) format. It supports 256 distinct colors and stores 1 pixel per 1 byte.
Each byte is an index into a table of up to 256 colors.

bcdColors_12b: Uses the 12-bit per pixel (12bpp) format. It supports 4096 distinct colors and stores 1 pixel per 2
byte. Each pixel value define the red, green and blue samples of the pixel, uses 4 bits for each color primary with 4
bits left over.

bcdColors_15b: Uses the 15-bit per pixel (15bpp) format. It supports 32768 distinct colors and stores 1 pixel per 2
byte. Each pixel value define the red, green and blue samples of the pixel, uses 5 bits for each color primary with
one bit left over.

bcdColors_16b: Uses the 16-bit per pixel (16bpp) format. It supports 65536 distinct colors and stores 1 pixel per 2
byte. Each pixel value define the red, green and blue samples of the pixel, uses 5 bits for red and blue colors, 6 bits
for green color.

bcdColors_24b: Uses the 24-bit per pixel (24bpp) format. It supports 16777216 distinct colors and stores 1 pixel
value per 3 bytes. Each pixel value defines the red, green and blue samples of the pixel.

bcdColors_32b: Uses the 32-bit per pixel (32bpp) format. It supports 4294967296 distinct colors and stores 1
pixel per 4 byte. Each pixel value define the Alpha, Red, Green and Blue samples of the pixel.

A.2.3 ColorDepth
(TSaveFmx2D_Gif)

Specifies the color depth of a Graphics Interchange Format (GIF) file for the TSaveFmx2D_Gif component.

Syntax:

type
{ Defined in the pfmxSave2D_Gif unit }
TGifColorDepth = (gcdColors_1b, gcdColors_2b, gcdColors_3b, gcdColors_4b,
gcdColors_5b, gcdColors_6b, gcdColors_7b, gcdColors_8b);

property ColorDepth: TGifColorDepth;

Description:

Color depth, also known as bit depth, pixel format, is either the number of bits used to indicate the color of a single pixel. In
a Graphics Interchange Format (GIF) file, the pixels can be defined by a varying number of bits. The property specifies
which color depth will be used to save a barcode symbol to a Graphics Interchange Format (GIF) file. It can be one of
these value (defined in the pfmxSave2D_Gif unit):

gcdColors_1b: Uses the 1-bit per pixel (1bpp) format. It supports 2 distinct colors (for example: black and white).
Each pixel is an 1-bit index into a table of up to 2 colors.

gcdColors_2b: Uses the 2-bit per pixel (2bpp) format. It supports 4 distinct colors. Each pixel value is a 2-bit index
into a table of up to 4 colors.

gcdColors_3b: Uses the 3-bit per pixel (3bpp) format. It supports 8 distinct colors. Each pixel value is a 3-bit index
into a table of up to 8 colors.

2D Barcode FMX Components User Manual

216

gcdColors_4b: Uses the 4-bit per pixel (4bpp) format. It supports 16 distinct colors. Each pixel value is a 4-bit
index into a table of up to 16 colors.

gcdColors_5b: Uses the 5-bit per pixel (5bpp) format. It supports 32 distinct colors. Each pixel value is a 5-bit
index into a table of up to 32 colors.

gcdColors_6b: Uses the 6-bit per pixel (6bpp) format. It supports 64 distinct colors. Each pixel value is a 6-bit
index into a table of up to 64 colors.

gcdColors_7b: Uses the 7-bit per pixel (7bpp) format. It supports 128 distinct colors. Each pixel value is a 7-bit
index into a table of up to 128 colors.

gcdColors_8b: Uses the 8-bit per pixel (8bpp) format. It supports 256 distinct colors. Each pixel value is a 8-bit
index into a table of up to 256 colors.

A.2.4 ColorDepth
(TSaveFmx2D_Png)

Specifies the color depth of a Portable Network Graphics (PNG) format file for TSaveFmx2D_Png component.

Syntax:

type
{ Defined in the pfmxSave2D_Png unit }
TPngColorDepth = (pcdIndex_1, pcdIndex_2, pcdIndex_4, pcdIndex_8, pcdRGB_8,
pcdRGBA_8);

property ColorType: TPngColorType;

Description:

Color depth, also known as bit depth, pixel format, is either the number of bits used to indicate the color of a single pixel. In
a Portable Network Graphics (PNG) file, the pixels can be defined by a varying number of bits. The property specifies
which color depth will be used to save a barcode symbol to a Portable Network Graphics (PNG) file. It can be one of these
value (defined in the pfmxSave2D_Png unit):

pcdIndex_1: Uses the 1-bit per pixel (1bpp) format. It supports 2 distinct colors (for example: black and white) and
stores 8 pixels per 1 byte. Each pixel is an 1-bit index into a table of up to 2 colors.

pcdIndex_2: Uses the 2-bit per pixel (2bpp) format. It supports 4 distinct colors and stores 4 pixels per 1 byte.
Each pixel value is a 2-bit index into a table of up to 4 colors.

pcdIndex_4: Uses the 4-bit per pixel (4bpp) format. It supports 16 distinct colors and stores 2 pixels per 1 byte.
Each pixel value is a 4-bit index into a table of up to 16 colors.

pcdIndex_8: Uses the 8-bit per pixel (8bpp) format. It supports 256 distinct colors and stores 1 pixel per 1 byte.
Each byte is an index into a table of up to 256 colors.

pcdRGB_8: Uses the 24-bit per pixel (24bpp) format. It supports 16777216 distinct colors and stores 1 pixel value
per 3 bytes. Each pixel value defines the red, green and blue samples of the pixel.

pcdRGBA_8: Uses the 32-bit per pixel (32bpp) format. It supports 4294967296 distinct colors and stores 1 pixel
per 4 byte. Each pixel value define the Alpha, Red, Green and Blue samples of the pixel.

2D Barcode FMX Components User Manual

217

A.2.5 CompressionLevel
(TSaveFmx2D_Png)

Specifies the compression level of a Portable Network Graphics (PNG) file for the TSaveFmx2D_Png component.

Syntax:

type
{ Defined in the pfmxSave2D_Png unit }
TPngCompressionLevel = (pclFastest, pclDefault, pclMaximum);

property CompressionLevel: TPngCompressionLevel;

Description:

The Portable Network Graphics (PNG) uses a non-patented lossless data compression method known as DEFLATE. The
property specifies what level of compression should be used to save a barcode symbol to a Portable Network Graphics
(PNG) file. It can be one of these value (defined in the pfmxSave2D_Png unit):

pclFastest: Uses the fastest compression. The compression operation should complete as quickly as possible,
even if the resulting file is not optimally compressed.

pclDefault: Uses the default compression level. It represents a balance between the compression ratio and
compression speed.

pclMaximum: Uses the maximum compression. The compression operation should be optimally compressed,
even if the operation takes a longer time to complete.

A.2.6 DeviceHeightInMM
(TSaveFmx2D_Emf)

Specifies the vertical height of the reference device for an Enhanced Metafile Format (EMF) file was generated by the
TSaveFmx2D_Emf component, in millimetres.

Syntax:

property DeviceHeightInMM: DWord;

Description:

The property specifies the vertical height of the reference device, in millimetres, when use the TSaveFmx2D_Emf
component to save a barcode symbol to an Enhanced Metafile Format (EMF) file.

Note, the property cannot be set to zero, if you set it to zero, an ESave2DError exception occurs.

A.2.7 DeviceHeightInPixel

2D Barcode FMX Components User Manual

218

(TSaveFmx2D_Emf)

Specifies the vertical height of the reference device for an Enhanced Metafile Format (EMF) file was generated by the
TSaveFmx2D_Emf component, in pixels.

Syntax:

property DeviceHeightInPixel: DWord;

Description:

The property specifies the vertical height of the reference device, in pixels, when use the TSaveFmx2D_Emf component to
save a barcode symbol to an Enhanced Metafile Format (EMF) file.

Note, the property cannot be set to zero, if you set it to zero, an ESave2DError exception occurs.

A.2.8 DeviceHeightInUM
(TSaveFmx2D_Emf)

Specifies the vertical height of the reference device for an Enhanced Metafile Format (EMF) file was generated by the
TSaveFmx2D_Emf component, in micrometres.

Syntax:

property DeviceHeightInUM: DWord;

Description:

The property specifies the vertical height of the reference device, in micrometres, when use the TSaveFmx2D_Emf
component to save a barcode symbol to an Enhanced Metafile Format (EMF) file.

The DeviceHeightInUM and the DeviceWidthInUm properties add the ability to measure device surfaces in micrometers,
which enhances the resolution and scalability of Enhanced Metafile Format (EMF) files. If one of them is set to zero, they
will be ignored.

A.2.9 DeviceWidthInMM
(TSaveFmx2D_Emf)

Specifies the horizontal width of the reference device for an Enhanced Metafile Format (EMF) file was generated by the
TSaveFmx2D_Emf component, in millimetres.

Syntax:

property DeviceWidthInMM: DWord;

Description:

The property specifies the horizontal width of the reference device, in millimetres, when use the TSaveFmx2D_Emf

2D Barcode FMX Components User Manual

219

component to save a barcode symbol to an Enhanced Metafile Format (EMF) file.

Note, the property cannot be set to zero, if you set it to zero, an ESave2DError exception occurs.

A.2.10 DeviceWidthInPixel
(TSaveFmx2D_Emf)

Specifies the horizontal width of the reference device for an Enhanced Metafile Format (EMF) file was generated by the
TSaveFmx2D_Emf component, in pixels.

Syntax:

property DeviceWidthInPixel: DWord;

Description:

The property specifies the horizontal width of the reference device, in pixels, when use the TSaveFmx2D_Emf component
to save a barcode symbol to an Enhanced Metafile Format (EMF) file.

Note, the property cannot be set to zero, if you set it to zero, an ESave2DError exception occurs.

A.2.11 DeviceWidthInUM
(TSaveFmx2D_Emf)

Specifies the horizontal width of the reference device for an Enhanced Metafile Format (EMF) file was generated by the
TSaveFmx2D_Emf component, in micrometres.

Syntax:

property DeviceWidthInUM: DWord;

Description:

The property specifies the horizontal width of the reference device, in micrometres, when use the TSaveFmx2D_Emf
component to save a barcode symbol to an Enhanced Metafile Format (EMF) file.

The DeviceWidthInUm and the DeviceHeightInUm properties add the ability to measure device surfaces in micrometers,
which enhances the resolution and scalability of Enhanced Metafile Format (EMF) files. If one of them is set to zero, they
will be ignored.

A.2.12 EmbedBarcodeText
(TSaveFmx2D_Emf, TSaveFmx2D_Eps, TSaveFmx2D_Gif, etc.)

2D Barcode FMX Components User Manual

220

Specifies whether to embed the barcode text to a picture file.

Syntax:

property EmbedBarcodeText: Boolean;

Description:

The property specifies whether to embed the barcode text to a picture file. Only the Portable Network Graphics (PNG),
Graphics Interchange Format (GIF) version 89a, Scalable Vector Graphics (SVG), Encapsulated PostScript (EPS), and
Enhanced Metafile (EMF) formats support to embed the barcode text.

Note, the Graphics Interchange Format (GIF) version 87a doesn't support to embed the other data into the picture file, so
for the TSaveFmx2D_Gif component, if the Version property is set to gv87a, the value of this property will be ignored.

Note, only the encoded barcode text will be embed to the picture file.

A.2.13 EmbedBarcodeText
(TSaveFmx2D_Png)

Specifies whether to embed the barcode text to a Portable Network Graphics (PNG) picture file for TSaveFmx2D_Png
component.

Syntax:

type
{ Defined in the pfmxSave2D_Png unit }
TPngEmbedBarcodeText = (pebNone, pebText, pebCompressedText);

property EmbedBarcodeText: TPngEmbedBarcodeText;

Description:

The property specifies whether to embed the barcode text to a Portable Network Graphics (PNG) picture file.

This property can be one of these values (defined in the pfmxSave2D_Png unit):

pebNone: Don't embed the barcode text to the picture file.

pebText: Embed the barcode text to the picture file directly.

pebCompressedText: Compress the barcode text then embed it to the picture file.

Note, only the encoded barcode text will be embed to the picture file.

A.2.14 Interlaced
(TSaveFmx2D_Png, TSaveFmx2D_Gif)

Specifies whether to generate the interlaced picture file when use the TSaveFmx2D_Gif or TSaveFmx2D_Png component

2D Barcode FMX Components User Manual

221

to save a barcode symbol.

Syntax:

property Interlaced: Boolean;

Description:

The Graphics Interchange Format (GIF) and Portable Network Graphics (PNG) allow the images is interlaced; i.e., that the
order of the raster lines in its data block is not sequential. This allows a partial display of the image that can be recognized
before the full image is painted. The property specifies whether to generate the interlaced images file.

A.2.15 LogicUnitsPerInch
(TSaveFmx2D_Wmf)

Specifies the number of logical units per inch when use the TSaveFmx2D_Wmf component to save a barcode symbol in
placeable Windows Metafile Format (WMF).

Syntax:

property LogicUnitsPerInch: Word;

Description:

Specifies the number of logical units per inch for a placeable Windows Metafile Format (WMF) file, in order to represent
the image. This value can be used to scale a placeable image.

By convention, an image is considered to be recorded at 1440 logical units (twips) per inch. Thus, a value of 720 specifies
that the image SHOULD be rendered at twice its normal size, and a value of 2880 specifies that the image SHOULD be
rendered at half its normal size.

Note, this property must be set if this Placeable property is set to true. If this Placeable property is set to false, the value of
this property will be ignored.

A.2.16 Placeable
(TSaveFmx2D_Wmf)

Specifies whether to generate a placeable Windows Metafile Format (WMF) file when use the TSaveFmx2D_Wmf
component to save a barcode symbol.

Syntax:

property Placeable: Boolean;

Description:

Original Windows Metafile Format (WMF) were device-specific; that is, the graphical images they contained would only be
rendered correctly if played back on the output device for which they were recorded. To overcome this limitation,

2D Barcode FMX Components User Manual

222

"placeable" Windows Metafile Format (WMF) were developed. The property specifies whether to generate a placeable
Windows Metafile Format (WMF) file.

Note, the property LogicUnitsPerInch must be set if this property is set to true. If this property is set to false, the value of
LogicUnitsPerInch property will be ignored.

A.4.17 Quality
(TSaveFmx2D_Jpg)

Indicates the trade-off ratio between the image quality and the file size when use the TSaveFmx2D_Jpg component to
save a barcode symbol.

Syntax:

type
{ Defined in the pfmxSave2DJpg unit }
TJPEGQuality = 0..100;

property Quality: TJPEGQuality default 100;

Description:

Use the Quality property to set the compression quality of the JPEG image when saving barcode symbol to a jpeg image.
Higher compression results in a poorer picture quality, but a smaller file size. The higher the property value (up to a
maximum of 100), the better the image quality, but the larger the file size. The lower the property value (to a minimum of 1),
the smaller the resulting file size, but at the expense of picture quality.

A.2.18 Version
(TSaveFmx2D_Gif)

Specifies the version of a Graphics Interchange Format (GIF) file for the TSaveFmx2D_Gif component.

Syntax:

type
{ Defined in the pfmxSave2D_Gif unit }
TGifVersion = (gv87a, gv89a);

property Version: TGifVersion;

Description:

There are two versions of the Graphics Interchange Format (GIF): versions 87a and 89a. The property specifies which
version will be used to save a barcode symbol to a Graphics Interchange Format (GIF) file. It can be one of these values
(defined in the pfmxSave2D_Gif unit):

gv87a: Uses the version 87a, the original version of the Graphics Interchange Format (GIF). It doesn't support to
embed the other data into the picture file, so the value of EmbedBarcodeText property will be ignored if you use the

2D Barcode FMX Components User Manual

223

version.

gv89a: Uses the version 89a, the enhanced version of the Graphics Interchange Format (GIF). If you use the
version, you can set the EmbedBarcodeText property to true to embed the encoded barcode text into the Graphics
Interchange Format (GIF) picture file.

A.2.19 XPPM
(TSaveFmx2D_Bmp)

Specifies the horizontal resolution of a Bitmap image (BMP) file for a TSaveFmx2D_Bmp component, in pixels per meter.

Syntax:

property XPPM: Integer;

Description:

The property specifies the horizontal resolution of the bitmap in pixels per meter. The value is used to help a bitmap image
(BMP) file reader choose a proper horizontal resolution when printing or displaying the Bitmap image (BMP) file.

A.2.20 YPPM
(TSaveFmx2D_Bmp)

Specifies the vertical resolution of a Bitmap image (BMP) file for a TSaveFmx2D_Bmp component, in pixels per meter.

Syntax:

property YPPM: Integer;

Description:

The property specifies the vertical resolution of the bitmap in pixels per meter. The value is used to help a bitmap image
(BMP) file reader choose a proper vertical resolution when printing or displaying the Bitmap image (BMP) file.

2D Barcode FMX Components User Manual

224

A.3 TCopyFmx2D

A.3.1 Barcode2D
(TCopyFmx2D)

Links a TBarcodeFmx2D component to a TCopyFmx2D component in order to copy the barcode symbol to the system
clipboard.

Syntax:

property Barcode2D: TBarcodeFmx2D;

Description:

Use the Barcode2D property to specify a TBarcodeFmx2D component such as the TBarcodeFmx2D_QRCode, the
TBarcodeFmx2D_PDF417, and the TBarcodeFmx2D_RSS14. Then execute the Copy method will copy the barcode
symbol specified by the 2D barcode component to the system clipboard.

The TBarcodeFmx2D_MaxiCode component is not supported now.

Annex B. Methods

B.1 TBarcodeFmx2D

B.1.1 Assign

Copies a barcode component from another barcode component.

Syntax:

procedure Assign(Source: TPresistent); override;

Description:

If the Source parameter is an object created from a subclass of TBarcodeFmx2D component class, and the class is same
to current barcode component class, Assign copies all property values and event handles except the Locked and the
Image properties from the source barcode component to current one. If Source is any other type of object, an
EBarcodeFmx2DError exception occurs.

2D Barcode FMX Components User Manual

225

Parameters:

Source: TPersistent; Specifies the source object.

B.1.2 Clear

Erases current barcode symbol in the TImage control that's specified by the Image property.

Syntax:

function Clear(UseSpaceColor: Boolean = false): Boolean; virtual;

Description:

The method erases the barcode symbol without erasing the background around it from the TImage control that's specified
by the Image property.

If the quiet zones are displayed (the ShowQuietZone property is set to true), they are included in the barcode symbol and
will be erased too. For the TBarcodeFmx2D_Code16K barcode components, the leading quiet zone and trailing quiet
zone are included always, even if the ShowQuietZone property is set to false.

Parameters:

UseSpaceColor: Boolean; Specifies whether the space color that's specified by the SpaceColor property is used
to erase the barcode symbol. If it's set to false, the current brush color of the TImage control will be used. If the
parameter isn't provided, it's default to false.

Return:

If the method succeeds, the return value is true.

If you use the Barcode property to specify the barcode text, when the length of Barcode property value is invalid, or
there is any invalid character in the Barcode property value, the return value is false. Corresponding to the
OnInvalidLength event or the OnInvalidChar event will occur.

If you use the Data property to specify the barcode text, when the length of Data property value is invalid, or there is
any invalid byte value in the Data property value, the return value is false. Corresponding to the OnInvalidDataLength
event or the OnInvalidDataChar event will occur.

B.1.3 Create

Creates and initializes a barcode component.

Syntax:

constructor Create(Owner: TComponent); override;

Description:

2D Barcode FMX Components User Manual

226

Call the Create method to instantiate a barcode object at runtime. Barcode components added at design time are created
automatically.

Parameters:

Owner: TComponent; It is the component that is responsible for freeing the barcode component instance. Typically,
this is the form. It becomes the value of the Owner property.

B.1.4 Destroy

Disposes of the instance of the barcode object.

Syntax:

destructor Destroy; override;

Description:

Destroy is the destructor for a barcode object.

Do not call the destructor directly in an application. Instead, call Free. The Free verifies that the barcode object is not nil
before it calls Destroy.

B.1.5 Draw

Redraws current barcode symbol in the TImage control that's specified by the Image property.

Syntax:

function Draw(ReEncode: Boolean = False): Boolean; virtual;

Description:

The method redraws the barcode symbol to the TImage control that's specified by the Image property. The barcode
symbol is specified in the properties of this barcode component.

Parameter:

ReEncode: Boolean; Normally, the barcode text will not be encoded again when call the method, the previous
encoded data will be used to draw the barcode symbol. If the parameter is set to true, the barcode text will be
encoded again before draw the barcode symbol. It defaults to false if the parameter is not provided.

If you changed the OnEncode event handle, please call the method and set the parameter to true (please call the
Clear method firstly).

Return:

If the method succeeds, the return value is true.

2D Barcode FMX Components User Manual

227

If you use the Barcode property to specify the barcode text, when the length of Barcode property value is invalid, or
there is any invalid character in the Barcode property value, the return value is false. Corresponding to the
OnInvalidLength event or the OnInvalidChar event will occur.

If you use the Data property to specify the barcode text, when the length of Data property value is invalid, or there is
any invalid byte value in the Data property value, the return value is false. Corresponding to the OnInvalidDataLength
event or the OnInvalidDataChar event will occur.

B.1.6 DrawTo

Draws a barcode symbol on the specified canvas. There are several different overloading methods, Syntax 1, Syntax 2,
and Syntax 3:

Syntax 1: Draws the barcode symbol that is specified by the properties of this barcode component.

Syntax 2: Draws the barcode symbol that is specified by the parameters of this method. The barcode text is
specified in the Barcode parameter. It is of type string.

The Barcode parameter is in fact an UnicodeString. By default, the unicode string will be converted to an UTF-8
bytes sequence (the BOM isn't included), then be encoded into the barcode symbol. If you want to use other
encoding scheme (for example the ANSI, UTF-16), please convert it in the OnEncode event handle, or use the
DrawTo (Syntax 3) overloading method and specify the converted bytes sequence in its Data parameter. If you want
to encode a block of binary (bytes) data, please use the DrawTo (Syntax 3) overloading method.

Syntax 3: Draws the barcode symbol that is specified by the parameters of this method. The barcode data is
specified in the Data parameter. It is of type TBytes (it is in fact a byte array).

You can use the method if you want to encode a block of binary (bytes) data into a barcode symbol.

B.1.6.1 DrawTo - Syntax 1

Draws a barcode symbol on the specified canvas. The barcode symbol is specified by the properties of this barcode
component.

Syntax:

function DrawTo(Canvas: TCanvas; Left, Top: Single; Module = 0; Angle: Single = -
1; Opacity: Single = -1; HDPI: Integer = 0; VDPI: Integer = 0): Integer;
overload; virtual;

Description:

On the specified canvas, draws current barcode symbol that is specified by the properties of this barcode component.

Parameters:

Canvas: TCanvas; Specifies target canvas to draw the barcode symbol on it.

2D Barcode FMX Components User Manual

228

Left: Single; Specifies the margin between the rotated barcode symbol and the left side of the canvas in dots or
pixels in the horizontal direction (using the horizontal resolution). If the quiet zones are drawn (please read the
ShowQuietZone property about whether or not the quiet zones will be drawn), they are included in the barcode
symbol. See diagram (the SpaceColor property is set to claSilver in order to accentuate the quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the SpaceColor property is set to
claSilver in order to accentuate the quiet zones):

See also the "LeftMargin" property.

Top: Single; Specifies the margin between the rotated barcode symbol and the top side of the canvas in dots or
pixels in the vertical direction (using the vertical resolution). If the quiet zones are displayed (please read the
ShowQuietZone property about whether or not the quiet zones will be displayed), they are included in the barcode
symbol. See diagram (the SpaceColor property is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

229

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the SpaceColor property is set to
claSilver in order to accentuate the quiet zones):

See also the "TopMargin" property.

Module: Single; Specifies the module size in dots or pixels (using the horizontal resolution). It defaults to 0 if the
Module parameter is not provided, and the value of Module property will be used.

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module
width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the
center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

2D Barcode FMX Components User Manual

230

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are
displayed, please read the ShowQuietZone property about whether or not the quiet zones will be displayed)
anticlockwise. See diagram (the SpaceColor property is set to claSilver in order to accentuate the quiet zones):

The parameter defaults to -1 if the Angle parameter is not provided, and the barcode symbol will be rotated based
on the value of the Orientation property:

boLeftRight: 0 degrees

boRightLeft: 180 degrees

boTopBottom: 270 degrees

boBottomTop: 90 degrees

If you want to use the -1 degrees, the 359 degrees can be used instead.

Opacity: Single, Specifies the transparency-level of entire barcode symbol, where 1 is not transparant at all, 0.5 is
50% see-through, and 0 is completely transparent.

The parameter defaults to -1 if it is not provided, and the value of Opacity property will be used.

Note, if the Inversed property is set to false, you can use the alpha channel of the SpaceColor property value to
specify the transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha
channel of the BarColor property value to specify the transparency-level of foreground color (bars or dark modules).
If the Inversed property is set to true, you can use the alpha channel of the BarColor property value to specify the
transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha channel of the
SpaceColor property value to specify the transparency-level of foreground color (bars or dark modules).

HDPI: Integer, Specifies the horizontal resolution of canvas in DPI. It's the number of dots or pixels per inch. It
defaults to 0 if the HDPI is not provided, and the physical horizontal resolution obtained from the Canvas parameter
will be used.

VDPI: Integer, Specifies the vertical resolution of canvas in DPI. It's the number of dots or pixels per inch. It defaults
to 0 if the VDPI is not provided, and the physical vertical resolution obtained from the Canvas parameter will be
used.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

2D Barcode FMX Components User Manual

231

If you use the Barcode property to specify the barcode text, and use the OnEncode event handle to encode the
barcode text to a bytes sequence in your own encoding scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats
that an invalid byte value is in the suffix codes of the bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the Barcode property to specify the barcode text, and use the OnEncode event handle to encode the
barcode text to a bytes sequence in your own encoding scheme, the Verify_InvalidIndex_BeforeBarcode (-3)
indicats that an invalid byte value is in the prefix codes of the bytes sequence (for example the BOM).

Verify_InvalidLength (-2):

If you use the Barcode property to specify the barcode text, it indicates that the length of Barcode property value is
invalid, also the OnInvalidLength event will occur.

If you use the Data property to specify the barcode text, it indicates that the length of Data property value is invalid,
also the OnInvalidDataLength event will occur.

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

If you use the Barcode property to specify the barcode text, it indicates that an invalid character is in the barcode
text, also the OnInvalidChar event will occur. The return value is the position index of the invalid charactere. For 32-
bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first character is invalid
character. For iOS and Android platform, the index 0 denotes that the first character is invalid character.

If you use the Data property to specify the barcode data, it indicates that an invalid byte value is in the barcode data,
also the OnInvalidDataChar event will occur. The return value is the position index of the invalid byte value. The index
0 denotes that the first byte value is invalid byte value.

B.1.6.2 DrawTo - Syntax 2

Draws a barcode symbol on the specified canvas. The barcode symbol is specified by the parameters of this method.

Syntax:

function DrawTo(Canvas: TCanvas; Barcode: string; BarColor, SpaceColor:
TAlphaColor; ShowQuietZone: Boolean; Left, Top, Module: Single; Angle: Single =
0; Opacity: Single = 1; HDPI: Integer = 0; VDPI: Integer = 0): Integer;
overload; virtual;

Description:

On the specified canvas, draws a barcode symbol that is specified by the parameters of this method.

Parameters:

Canvas: TCanvas; Specifies target canvas to draw the barcode symbol on it.

Barcode: String; Specifies the barcode text. It is of type string, and it is in fact an UnicodeString. By default, the

2D Barcode FMX Components User Manual

232

unicode string will be converted to an UTF-8 bytes sequence (the BOM isn't included), then be encoded into the
barcode symbol. If you want to use other encoding scheme (for example the ANSI, UTF-16), please convert it in the
OnEncode event handle, or use the DrawTo (Syntax 3) overloading method and specify the converted bytes
sequence in its Data parameter. If you want to encode a block of binary (bytes) data, please use the DrawTo
(Syntax 3) overloading method.

For the TBarcodeFmx2D_RSS14 and TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit
is set to true, the check digit doesn't need to be included in the parameter, otherwise the check digit can be
specified by you in the parameter.

See also the "Barcode" and "Data" properties.

BarColor: TAlphaColor; In general, the Inversed property is set to false. In this case, the parameters specifies the
color for all bars (Stacked 2D barcode symbology and Linear 1D barcode symbology) or dark modules (Matrix 2D
barcode symbology) in the barcode symbol.

If the Inversed property is set to true, it specifies the color for all spaces (Stacked 2D barcode symbology and Linear
1D barcode symbology) or light modules (Matrix 2D barcode symbology) in the barcode symbol. Also, if the
ShowQuietZone parameter value is set to true, the leading quiet zone, trailing quiet zone, top quiet zone, and bottom
quiet zone are drawn using the color.

The alpha channel of the BarColor parameter is supported.

See also the "BarColor" property.

SpaceColor: TAlphaColor; In general, the Inversed property is set to false. In this case, the parameters specifies
the color for all spaces (Stacked 2D barcode symbology and Linear 1D barcode symbology) or light modules
(Matrix 2D barcode symbology) in the barcode symbol. Also, if the ShowQuietZone parameter value is set to true,
the leading quiet zone, trailing quiet zone, top quiet zone, and bottom quiet zone are drawn using the color.

If the Inversed property is set to true, it specifies the color for all bars (Stacked 2D barcode symbology and Linear
1D barcode symbology) or dark modules (Matrix 2D barcode symbology) in the barcode symbol.

The alpha channel of the SpaceColor parameter is supported.

See also the "SpaceColor" property.

ShowQuietZone: Boolean; Specifies whether to draw the leading quiet zone, trailing quiet zone, top quiet zone,
and bottom quiet zone. If the parameter value is set to true, these quiet zones are drawn. Otherwise, they don't be
drawn. You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties to
specify the size of these quiet zones in modules. See diagram (the SpaceColor parameter is set to claSilver in
order to accentuate the quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone will be drawn
always, even if the ShowQuietZone parameter value is set to false. See diagram (the SpaceColor parameter is set
to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

233

In general, the Inversed property is set to false. In this case, these quiet zones are drawn using the color specified by
SpaceColor parameter. If the Inversed property is set to true, these quiet zones are drawn using the color specified
by BarColor parameter.

See also the "ShowQuietZone" property.

Left: Single; Specifies the margin between the rotated barcode symbol and the left side of the canvas in dots or
pixels in the horizontal direction (using the horizontal resolution). If the quiet zones are drawn (please read the
ShowQuietZone parameter section above about whether or not the quiet zones will be drawn), they are included in
the barcode symbol. See diagram (the SpaceColor parameter value is set to claSilver in order to accentuate the
quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone are included
always, even if the ShowQuietZone parameter is set to false. See diagram (the SpaceColor parameter value is set
to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

234

See also the "LeftMargin" property.

Top: Single; Specifies the margin between the rotated barcode symbol and the top side of the canvas in dots ot
pixels in the vertical direction (using the vertical resolution). If the quiet zones are drawn (please read the
ShowQuietZone parameter section above about whether or not the quiet zones will be drawn), they are included in
the barcode symbol. See diagram (the SpaceColor parameter value is set to claSilver in order to accentuate the
quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone are included
always, even if the ShowQuietZone parameter is set to false. See diagram (the SpaceColor parameter value is set
to claSilver in order to accentuate the quiet zones):

See also the "TopMargin" property.

Module: Single; Specifies the module size in dots or pixels (using the horizontal resolution).

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module

2D Barcode FMX Components User Manual

235

width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the
center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are drawn,
please read the ShowQuietZone parameter section above about whether or not the quiet zones will be drawn)
anticlockwise. It defaults to 0 if the parameter is not provided, meaning left to right horizontal direction. See diagram
(the SpaceColor parameter value is set to claSilver in order to accentuate the quiet zones):

Opacity: Single, Specifies the transparency-level of entire barcode symbol, where 1 is not transparant at all, 0.5 is
50% see-through, and 0 is completely transparent.

The parameter defaults to 1 if it is not provided, meaning not transparant at all.

Note, if the Inversed property is set to false, you can use the alpha channel of the SpaceColor parameter value to
specify the transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha
channel of the BarColor parameter value to specify the transparency-level of foreground color (bars or dark
modules). If the Inversed property is set to true, you can use the alpha channel of the BarColor parameter value to
specify the transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha
channel of the SpaceColor parameter value to specify the transparency-level of fore-ground color (bars or dark
modules).

2D Barcode FMX Components User Manual

236

HDPI: Integer, Specifies the horizontal resolution of canvas in DPI. It's the number of dots or pixels per inch. It
defaults to 0 if the HDPI is not provided, and the physical horizontal resolution obtained from the Canvas parameter
will be used.

VDPI: Integer, Specifies the vertical resolution of canvas in DPI. It's the number of dots or pixels per inch. It defaults
to 0 if the VDPI is not provided, and the physical vertical resolution obtained from the Canvas parameter will be
used.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats that an invalid byte value is in the suffix codes of the
bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_BeforeBarcode (-3) indicats that an invalid byte value is in the prefix codes of the
bytes sequence (for example the BOM).

Verify_InvalidLength (-2):

It indicates that the length of Barcode parameter value is invalid.

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid character is in the barcode text, the return value is the position index of the invalid
charactere. For 32-bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first character
is invalid character. For iOS and Android platform, the index 0 denotes that the first character is invalid character.

B.1.6.3 DrawTo - Syntax 3

Draws a barcode symbol on the specified canvas. The barcode symbol is specified by the parameters of this method.

Syntax:

function DrawTo(Canvas: TCanvas; Data: TBytes; BarColor, SpaceColor: TAlphaColor;
ShowQuietZone: Boolean; Left, Top, Module: Single; Angle: Single = 0; Opacity:
Single = 1; HDPI: Integer = 0; VDPI: Integer = 0): Integer; overload; virtual;

Description:

On the specified canvas, draws a barcode symbol that is specified by the parameters of this method.

Parameters:

2D Barcode FMX Components User Manual

237

Canvas: TCanvas; Specifies target canvas to draw the barcode symbol on it.

Data: TBytes; Specifies the barcode text. It is of type TBytes (it is in fact a byte array).

You can specify a block of binary (bytes) data to the parameter, in order to encode it into a barcode symbol.

For the TBarcodeFmx2D_RSS14 and TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit
is set to true, the check digit doesn't need to be included in the parameter, otherwise the check digit can be
specified by you in the parameter.

See also the "Barcode" and "Data" properties.

BarColor: TAlphaColor; In general, the Inversed property is set to false. In this case, the parameters specifies the
color for all bars (Stacked 2D barcode symbology and Linear 1D barcode symbology) or dark modules (Matrix 2D
barcode symbology) in the barcode symbol.

If the Inversed property is set to true, it specifies the color for all spaces (Stacked 2D barcode symbology and Linear
1D barcode symbology) or light modules (Matrix 2D barcode symbology) in the barcode symbol. Also, if the
ShowQuietZone parameter value is set to true, the leading quiet zone, trailing quiet zone, top quiet zone, and bottom
quiet zone are drawn using the color.

The alpha channel of the BarColor parameter is supported.

See also the "BarColor" property.

SpaceColor: TAlphaColor; In general, the Inversed property is set to false. In this case, the parameters specifies
the color for all spaces (Stacked 2D barcode symbology and Linear 1D barcode symbology) or light modules
(Matrix 2D barcode symbology) in the barcode symbol. Also, if the ShowQuietZone parameter value is set to true,
the leading quiet zone, trailing quiet zone, top quiet zone, and bottom quiet zone are drawn using the color.

If the Inversed property is set to true, it specifies the color for all bars (Stacked 2D barcode symbology and Linear
1D barcode symbology) or dark modules (Matrix 2D barcode symbology) in the barcode symbol.

The alpha channel of the SpaceColor parameter is supported.

See also the "SpaceColor" property.

ShowQuietZone: Boolean; Specifies whether to draw the leading quiet zone, trailing quiet zone, top quiet zone,
and bottom quiet zone. If the parameter value is set to true, these quiet zones are drawn. Otherwise, they don't be
drawn. You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties to
specify the size of these quiet zones in modules. See diagram (the SpaceColor parameter is set to claSilver in
order to accentuate the quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone will be drawn
always, even if the ShowQuietZone parameter value is set to false. See diagram (the SpaceColor parameter is set
to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

238

In general, the Inversed property is set to false. In this case, these quiet zones are drawn using the color specified by
SpaceColor parameter. If the Inversed property is set to true, these quiet zones are drawn using the color specified
by BarColor parameter.

See also the "ShowQuietZone" property.

Left: Single; Specifies the margin between the rotated barcode symbol and the left side of the canvas in dots or
pixels in the horizontal direction (using the horizontal resolution). If the quiet zones are drawn (please read the
ShowQuietZone parameter section above about whether or not the quiet zones will be drawn), they are included in
the barcode symbol. See diagram (the SpaceColor parameter value is set to claSilver in order to accentuate the
quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone are included
always, even if the ShowQuietZone parameter is set to false. See diagram (the SpaceColor parameter value is set
to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

239

See also the "LeftMargin" property.

Top: Single; Specifies the margin between the rotated barcode symbol and the top side of the canvas in dots ot
pixels in the vertical direction (using the vertical resolution). If the quiet zones are drawn (please read the
ShowQuietZone parameter section above about whether or not the quiet zones will be drawn), they are included in
the barcode symbol. See diagram (the SpaceColor parameter value is set to claSilver in order to accentuate the
quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone are included
always, even if the ShowQuietZone parameter is set to false. See diagram (the SpaceColor parameter value is set
to claSilver in order to accentuate the quiet zones):

See also the "TopMargin" property.

Module: Single; Specifies the module size in dots or pixels (using the horizontal resolution).

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module

2D Barcode FMX Components User Manual

240

width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the
center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are drawn,
please read the ShowQuietZone parameter section above about whether or not the quiet zones will be drawn)
anticlockwise. It defaults to 0 if the parameter is not provided, meaning left to right horizontal direction. See diagram
(the SpaceColor parameter value is set to claSilver in order to accentuate the quiet zones):

Opacity: Single, Specifies the transparency-level of entire barcode symbol, where 1 is not transparant at all, 0.5 is
50% see-through, and 0 is completely transparent.

The parameter defaults to 1 if it is not provided, meaning not transparant at all.

Note, if the Inversed property is set to false, you can use the alpha channel of the SpaceColor parameter value to
specify the transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha
channel of the BarColor parameter value to specify the transparency-level of foreground color (bars or dark
modules). If the Inversed property is set to true, you can use the alpha channel of the BarColor parameter value to
specify the transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha
channel of the SpaceColor parameter value to specify the transparency-level of fore-ground color (bars or dark
modules).

2D Barcode FMX Components User Manual

241

HDPI: Integer, Specifies the horizontal resolution of canvas in DPI. It's the number of dots or pixels per inch. It
defaults to 0 if the HDPI is not provided, and the physical horizontal resolution obtained from the Canvas parameter
will be used.

VDPI: Integer, Specifies the vertical resolution of canvas in DPI. It's the number of dots or pixels per inch. It defaults
to 0 if the VDPI is not provided, and the physical vertical resolution obtained from the Canvas parameter will be
used.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidLength (-2):

It indicates that the length of Data parameter value is invalid.

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid byte value is in the Data parameter, the return value is the position index of the invalid byte
value. The index 0 denotes that the first byte value is invalid.

B.1.7 DrawToSize

Returns the horizontal width and vertical height of a rotated barcode symbol in dots or pixels. There are several different
overloading methods, Syntax 1, Syntax 2, and Syntax 3:

Syntax 1: Returns the horizontal width and vertical height of the rotated barcode symbol that is specified by the
properties of this barcode component.

Syntax 2: Returns the horizontal width and vertical height of the rotated barcode symbol that is specified by the
parameters of this method. The barcode text is specified in the Barcode parameter. It is of type string.

The Barcode parameter is in fact an UnicodeString. By default, the unicode string will be converted to an UTF-8
bytes sequence (the BOM isn't included), then be encoded into the barcode symbol. If you want to use other
encoding scheme (for example the ANSI, UTF-16), please convert it in the OnEncode event handle, or use the
DrawTo (Syntax 3) overloading method and specify the converted bytes sequence in its Data parameter. If you want
to encode a block of binary (bytes) data, please use the DrawTo (Syntax 3) overloading method.

Syntax 3: Returns the horizontal width and vertical height of the rotated barcode symbol that is specified by the
parameters of this method. The barcode text is specified in the Data parameter. It is of type TBytes (it is in fact a
byte array).

You can use the method if you want to encode a block of binary (bytes) data into a barcode symbol.

2D Barcode FMX Components User Manual

242

B.1.7.1 DrawToSize - Syntax 1

Returns the horizontal width and vertical height of a rotated barcode symbol in dots or pixels. The barcode symbol is
specified by the properties of this barcode component.

Syntax:

function DrawToSize(var Width, Height, SymbolWidth, SymbolHeight: Single; Module:
Single = 0; Angle: Single = -1; Canvas: TCanvas = nil; HDPI: Integer = 0; VDPI:
Integer = 0): Integer; overload; virtual;

Description:

The method returns the horizontal width and vertical height of a rotated barcode symbol that is specified by properties of
this barcode component, in dots or pixels.

Parameters:

Width: Single; Returns the horizontal width of the rotated barcode symbol in dots or pixels in the horizontal direction
(using the horizontal resolution).

If the quiet zones are displayed (please read the ShowQuietZone property about whether or not the quiet zones will
be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in claSilver color in
order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

Height: Single; Returns the vertical height of the rotated barcode symbol in dots or pixels in the vertical direction
(using the vertical resolution).

If the quiet zones are displayed (please read the ShowQuietZone property about whether or not the quiet zones will
be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in claSilver color in

2D Barcode FMX Components User Manual

243

order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

SymbolWidth: Single; Returns the distance between the leading and trailing of the rotated barcode symbol in dots
or pixels (using the horizontal resolution).

If the quiet zones are displayed (please read the ShowQuietZone property about whether or not the quiet zones will
be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in claSilver color in
order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the quiet zones are drawn in

2D Barcode FMX Components User Manual

244

claSilver color in order to accentuate them):

See also the "BarcodeWidth" property.

SymbolHeight: Single; Returns the distance between the top and bottom of the rotated barcode symbol in dots or
pixels (using the vertical resolution).

If the quiet zones are displayed (please read the ShowQuietZone property about whether or not the quiet zones will
be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in claSilver color in
order to accentuate them):

See also the "BarcodeHeight" property.

Module: Single; Specifies the module size in dots or pixels (using the horizontal resolution). It defaults to 0 if the
Module parameter is not provided, and the value of Module property will be used.

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module
width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the

2D Barcode FMX Components User Manual

245

center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are
displayed, please read the ShowQuietZone property about whether or not the quiet zones will be displayed)
anticlockwise. See diagram (the quiet zones are drawn in claSilver color in order to accentuate them):

The parameter defaults to -1 if the Angle parameter is not provided, and the barcode symbol will be rotated based
on the value of the Orientation property:

boLeftRight: 0 degrees

boRightLeft: 180 degrees

boTopBottom: 270 degrees

boBottomTop: 90 degrees

If you want to use the -1 degrees, the 359 degrees can be used instead.

Canvas: TCanvas; Specifies target canvas to drawn the barcode symbol on it. The parameter is useful for obtaining
the physical resolution if one of HDPI and VDPI parameters is set to 0. If both HDPI and VDPI parameters are set to
0, or both HDPI and VDPI parameters are not set to 0, the parameter will be ignored, in this case, you can set it to
nil.

HDPI: Integer, Specifies the horizontal resolution of canvas in DPI. It's the number of dots or pixels per inch. It
defaults to 0 if the HDPI is not provided, and the physical horizontal resolution obtained from the Canvas parameter
will be used. If both HDPI and VDPI are set to 0, it indicates the horizontal resolution is equal to the vertical
resolution.

VDPI: Integer, Specifies the vertical resolution of canvas in DPI. It's the number of dots or pixels per inch. It defaults
to 0 if the VDPI is not provided, and the physical vertical resolution obtained from the Canvas parameter will be
used. If both VDPI and HDPI are set to 0, it indicates the vertical resolution is equal to the horizontal resolution.

2D Barcode FMX Components User Manual

246

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

If you use the Barcode property to specify the barcode text, and use the OnEncode event handle to encode the
barcode text to a bytes sequence in your own encoding scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats
that an invalid byte value is in the suffix codes of the bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the Barcode property to specify the barcode text, and use the OnEncode event handle to encode the
barcode text to a bytes sequence in your own encoding scheme, the Verify_InvalidIndex_BeforeBarcode (-3)
indicats that an invalid byte value is in the prefix codes of the bytes sequence (for example the BOM).

Verify_InvalidLength (-2):

If you use the Barcode property to specify the barcode text, it indicates that the length of Barcode property value is
invalid, also the OnInvalidLength event will occur.

If you use the Data property to specify the barcode text, it indicates that the length of Data property value is invalid,
also the OnInvalidDataLength event will occur.

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

If you use the Barcode property to specify the barcode text, it indicates that an invalid character is in the barcode
text, also the OnInvalidChar event will occur. The return value is the position index of the invalid charactere. For 32-
bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first character is invalid
character. For iOS and Android platform, the index 0 denotes that the first character is invalid character.

If you use the Data property to specify the barcode data, it indicates that an invalid byte value is in the barcode data,
also the OnInvalidDataChar event will occur. The return value is the position index of the invalid byte value. The index
0 denotes that the first byte value is invalid byte value.

B.1.7.2 DrawToSize - Syntax 2

Returns the horizontal width and vertical height of a rotated barcode symbol in dots or pixels. The barcode symbol is
specified by the parameters of this method.

Syntax:

function DrawToSize(var Width, Height, SymbolWidth, SymbolHeight: Single; Barcode:
string; ShowQuietZone: Boolean; Module: Single; Angle: Single = 0; Canvas:
TCanvas = nil; HDPI: Integer = 0; VDPI: Integer = 0): Integer; overload;
virtual;

Description:

2D Barcode FMX Components User Manual

247

The method returns the horizontal width and vertical height of a rotated barcode symbol that is specified by parameters of
this method, in dots or pixels.

Parameters:

Width: Single; Returns the horizontal width of the rotated barcode symbol in dots or pixels in the horizontal direction
(using the horizontal resolution).

If the quiet zones are displayed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

Height: Single; Returns the vertical height of the rotated barcode symbol in dots or pixels in the vertical direction
(using the vertical resolution).

If the quiet zones are displayed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

2D Barcode FMX Components User Manual

248

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

SymbolWidth: Single; Returns the distance between the leading and trailing of the rotated barcode symbol in dots
or pixels (using the horizontal resolution).

If the quiet zones are displayed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

2D Barcode FMX Components User Manual

249

See also the "BarcodeWidth" property.

SymbolHeight: Single; Returns the distance between the top and bottom of the rotated barcode symbol in dots or
pixels (using the vertical resolution).

If the quiet zones are displayed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

See also the "BarcodeHeight" property.

Barcode: String; Specifies the barcode text. It is of type string, and it is in it fact an UnicodeString. By default, the
unicode string will be converted to an UTF-8 bytes sequence (the BOM isn't included), then be encoded into the
barcode symbol. If you want to use other encoding scheme (for example the ANSI, UTF-16), please convert it in the
OnEncode event handle, or use the DrawToSize (Syntax 3) overloading method and specify the converted bytes
sequence in its Data parameter. If you want to encode a block of binary (bytes) data, please use the DrawToSize
(Syntax 3) overloading method.

For the TBarcodeFmx2D_RSS14 and TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit
is set to true, the check digit doesn't need to be included in the parameter, otherwise the check digit can be
specified by you in the parameter.

See also the "Barcode" and "Data" properties.

ShowQuietZone: Boolean; Specifies whether to include the leading quiet zone, trailing quiet zone, top quiet zone,
and bottom quiet zone in the barcode symbol. If the parameter value is set to true, these quiet zones are included.
Otherwise, they don't be included. You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and

2D Barcode FMX Components User Manual

250

BottomQuietZone properties to specify the size of these quiet zones in modules. See diagram (the quiet zones are
drawn in claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone will be included
always, even if the ShowQuietZone parameter value is set to false. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

See also the "ShowQuietZone" property.

Module: Single; Specifies the module size in dots or pixels (using the horizontal resolution).

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module
width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the
center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

2D Barcode FMX Components User Manual

251

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are drawn,
please read the ShowQuietZone parameter section above about whether or not the quiet zones will be drawn)
anticlockwise. It defaults to 0 if the parameter is not provided, meaning left to right horizontal direction. See diagram
(the quiet zones are drawn in claSilver color in order to accentuate them):

Canvas: TCanvas; Specifies target canvas to drawn the barcode symbol on it. The parameter is useful for obtaining
the physical resolution if one of HDPI and VDPI parameters is set to 0. If both HDPI and VDPI parameters are set to
0, or both HDPI and VDPI parameters are not set to 0, the parameter will be ignored, in this case, you can set it to
nil.

HDPI: Integer, Specifies the horizontal resolution of canvas in DPI. It's the number of dots or pixels per inch. It
defaults to 0 if the HDPI is not provided, and the physical horizontal resolution obtained from the Canvas parameter
will be used. If both HDPI and VDPI are set to 0, it indicates the horizontal resolution is equal to the vertical
resolution.

VDPI: Integer, Specifies the vertical resolution of canvas in DPI. It's the number of dots or pixels per inch. It defaults
to 0 if the VDPI is not provided, and the physical vertical resolution obtained from the Canvas parameter will be
used. If both VDPI and HDPI are set to 0, it indicates the vertical resolution is equal to the horizontal resolution.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

If you use use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats that an invalid byte value is in the suffix codes of the
bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_BeforeBarcode (-3) indicats that an invalid byte value is in the prefix codes of the
bytes sequence (for example the BOM).

Verify_InvalidLength (-2):

It indicates that the length of Barcode parameter value is invalid.

Verify_OK (-1):

2D Barcode FMX Components User Manual

252

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid character is in the barcode text, the return value is the position index of the invalid
charactere. For 32-bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first character
is invalid character. For iOS and Android platform, the index 0 denotes that the first character is invalid character.

B.1.7.3 DrawToSize - Syntax 3

Returns the horizontal width and vertical height of a rotated barcode symbol in dots or pixels. The barcode symbol is
specified by the parameters of this method.

Syntax:

function DrawToSize(var Width, Height, SymbolWidth, SymbolHeight: Single; Data:
TBytes; ShowQuietZone: Boolean; Module: Single; Angle: Single = 0; Canvas:
TCanvas = nil; HDPI: Integer = 0; VDPI: Integer = 0): Integer; overload;
virtual;

Description:

The method returns the horizontal width and vertical height of a rotated barcode symbol that is specified by parameters of
this method, in dots or pixels.

Parameters:

Width: Single; Returns the horizontal width of the rotated barcode symbol in dots or pixels in the horizontal direction
(using the horizontal resolution).

If the quiet zones are displayed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

2D Barcode FMX Components User Manual

253

Height: Single; Returns the vertical height of the rotated barcode symbol in dots or pixels in the vertical direction
(using the vertical resolution).

If the quiet zones are displayed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

SymbolWidth: Single; Returns the distance between the leading and trailing of the rotated barcode symbol in dots
or pixels (using the horizontal resolution).

2D Barcode FMX Components User Manual

254

If the quiet zones are displayed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

See also the "BarcodeWidth" property.

SymbolHeight: Single; Returns the distance between the top and bottom of the rotated barcode symbol in dots or
pixels (using the vertical resolution).

If the quiet zones are displayed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be displayed), they are included in the barcode symbol. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

See also the "BarcodeHeight" property.

2D Barcode FMX Components User Manual

255

Data: TBytes; Specifies the barcode text. It is of type TBytes (it is in fact a byte array).

You can specify a block of binary (bytes) data to the parameter, in order to encode it into a barcode symbol.

For the TBarcodeFmx2D_RSS14 and TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit
is set to true, the check digit doesn't need to be included in the parameter, otherwise the check digit can be
specified by you in the parameter.

See also the "Barcode" and "Data" properties.

ShowQuietZone: Boolean; Specifies whether to include the leading quiet zone, trailing quiet zone, top quiet zone,
and bottom quiet zone in the barcode symbol. If the parameter value is set to true, these quiet zones are included.
Otherwise, they don't be included. You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and
BottomQuietZone properties to specify the size of these quiet zones in modules. See diagram (the quiet zones are
drawn in claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone will be included
always, even if the ShowQuietZone parameter value is set to false. See diagram (the quiet zones are drawn in
claSilver color in order to accentuate them):

See also the "ShowQuietZone" property.

Module: Single; Specifies the module size in dots or pixels (using the horizontal resolution).

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module
width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the
center to center horizontal distance between adjacent modules. See diagram:

2D Barcode FMX Components User Manual

256

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are drawn,
please read the ShowQuietZone parameter section above about whether or not the quiet zones will be drawn)
anticlockwise. It defaults to 0 if the parameter is not provided, meaning left to right horizontal direction. See diagram
(the quiet zones are drawn in claSilver color in order to accentuate them):

Canvas: TCanvas; Specifies target canvas to drawn the barcode symbol on it. The parameter is useful for obtaining
the physical resolution if one of HDPI and VDPI parameters is set to 0. If both HDPI and VDPI parameters are set to
0, or both HDPI and VDPI parameters are not set to 0, the parameter will be ignored, in this case, you can set it to
nil.

HDPI: Integer, Specifies the horizontal resolution of canvas in DPI. It's the number of dots or pixels per inch. It
defaults to 0 if the HDPI is not provided, and the physical horizontal resolution obtained from the Canvas parameter
will be used. If both HDPI and VDPI are set to 0, it indicates the horizontal resolution is equal to the vertical
resolution.

VDPI: Integer, Specifies the vertical resolution of canvas in DPI. It's the number of dots or pixels per inch. It defaults
to 0 if the VDPI is not provided, and the physical vertical resolution obtained from the Canvas parameter will be
used. If both VDPI and HDPI are set to 0, it indicates the vertical resolution is equal to the horizontal resolution.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidLength (-2):

It indicates that the length of Data parameter value is invalid.

Verify_OK (-1):

It indicates the method succeeds.

2D Barcode FMX Components User Manual

257

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid byte value is in the Data parameter, the return value is the position index of the invalid byte
value. The index 0 denotes that the first byte value is invalid.

B.1.8 GetCheckSum
(TBarcodeFmx2D_MicroPDF417)

Returns the check sum of a barcode text that will be encoded into a series of structured append symbols. The value will be
used in the structured append block, and the structured append block will be used by each symbol in the series of
MicroPDF417 structured append symbols. There are two different overloading methods, Syntax 1 and Syntax 2:

Syntax 1: Returns the check sum value of a barcode text. The barcode text is specified in the Barcode parameter. It
is of type string.

The Barcode parameter is in fact an UnicodeString. By default, the unicode string will be converted to an UTF-8
bytes sequence (the BOM isn't included), then caculate its check sum. If you want to use other encoding scheme (for
example the ANSI, UTF-16), please convert it in the OnEncode event handle, or use the GetCheckSum (Syntax 2)
overloading method and specify the converted bytes sequence in its Data parameter. If you want to caculate the
check sum of a block of binary (bytes) data, please use the GetCheckSum (Syntax 2) overloading method.

Syntax 2: Returns the check sum value of a barcode text. The barcode text is specified in the Data parameter. It is
of type TBytes (it is in fact a byte array).

You can use the method to caculate the check sum of a block of binary (bytes) data.

See also the "Sturctured append" section in the "TBarcodeFmx2D_MicroPDF417" article.

B.1.8.1 GetCheckSum - Syntax 1
(TBarcodeFmx2D_MicroPDF417)

Returns the check sum of a barcode text that will be encoded into a series of structured append symbols.

Syntax:

type
{ Defined in the pfmxPDF417Com unit }
TPDF417_Option = (poIgnoreShiftBeforeECI, poFirst903TextAlphaLatch,
poFirst904TextMixedLatch, po906TextAlphaLatch, po907TextAlphaLatch,
po908TextAlphaLatch, po910TextAlphaLatch, po912TextAlphaLatch,
po914TextAlphaLatch, po915TextAlphaLatch, poFirstFNC1MatchAI01,
poMicroPDF417Explicit901);

{ Defined in the pfmxPDF417Com unit }
TPDF417_Options = set of TPDF417_Option;
{ Defined in the pfmxMicroPDF417 unit }

2D Barcode FMX Components User Manual

258

TMicroPDF417_Options = TPDF417_Options;
function GetCheckSum(Barcode: string; AllowEscape: Boolean; var InvalidIndex:
Integer; Options: TMicroPDF417_Options = []): string; virtual;

Description:

The method returns the check sum of a barcode text that will be encoded into a series of MicroPDF417 structured append
symbols. The value will be used in the structured append block, and the structured append block will be used by each
symbol in the series of MicroPDF417 structured append symbols. See also the "Structured append" section in the
"TBarcodeFmx2D_MicroPDF417" article.

Parameters:

Barcode: string; It's the original input text before division into the each symbol in the series of structured append
symbols. It is of type string, and it is in fact an UnicodeString. By default, the unicode string will be converted to an
UTF-8 bytes sequence (the BOM isn't included), then caculate its check sum. If you want to use other encoding
scheme (for example the ANSI, UTF-16), please convert it in the OnEncode event handle, or use the GetCheckSum
(Syntax 2) overloading method and specify the converted bytes sequence in its Data parameter. If you want to
caculate the check sum of a block of binary (bytes) data, please use the GetCheckSum (Syntax 2) overloading
method.

See also the "Barcode" property article.

AllowEscape: Boolean; Specifies whether to allow users to insert the escape sequences to the Barcode
parameter value, in order to place the function characters and additional control information.

See also the "Escape sequences" section in the "TBarcodeFmx2D_MicroPDF417" article and the "AllowEscape"
property article.

InvalidIndex: Integer; If there is any invalid character in the barcode text that is specified by the Barcode parameter,
the parameter returns the position index of first invalid character. Otherwise, it returns the Verify_OK (-1).

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats that an invalid byte value is in the suffix codes of
the bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_BeforeBarcode (-3) indicats that an invalid byte value is in the prefix codes of
the bytes sequence (for example the BOM).

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid character is in the barcode text, the return value is the position index of the invalid
charactere. For 32-bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first
character is invalid character. For iOS and Android platform, the index 0 denotes that the first character is
invalid character.

2D Barcode FMX Components User Manual

259

Options: TPDF417_Options; The Options parameter is an advanced feature which allows low level control over
data encoding. The parameter can be used to change the encoding algorithm and meanings of some fucntion
codewords, in order to match the reader. The values that can be included in the Options parameter are defined in
the pPDF417Com unit.

See also the "Options" property article.

Return:

If the method succeeds, it returns the check sum value, it's a 16-bit word value, in decimal string (UnicodeString) format,
and the InvalidIndex parameter returns Verify_OK (-1). If the method fails, the InvalidIndex parameter returns a position
index of first invalid character in the Barcode parameter. See also the InvalidIndex parameter section above.

The result string can be directly used as the check sum in the structured append block. For example:

var
full_barcode, check_sum, structuredappend_block: string;
invalid_index: Integer;

begin
full_barcode := '......';
check_sum := GetCheckSum(full_barcode, False, invalid_index, []);
if invalid_index <> -1 then exit;
structuredappend_block := '\s[1,001287023,,5,2008-12-03 05:30:00,,USA,,' +
check_sum + ']';

//.....

See also the "Sturctured append" section in the "TBarcodeFmx2D_MicroPDF417" article.

B.1.8.2 GetCheckSum - Syntax 2
(TBarcodeFmx2D_MicroPDF417)

Returns the check sum of a barcode text that will be encoded into a series of structured append symbols.

Syntax:

type
{ Defined in the pfmxPDF417Com unit }
TPDF417_Option = (poIgnoreShiftBeforeECI, poFirst903TextAlphaLatch,
poFirst904TextMixedLatch, po906TextAlphaLatch, po907TextAlphaLatch,
po908TextAlphaLatch, po910TextAlphaLatch, po912TextAlphaLatch,
po914TextAlphaLatch, po915TextAlphaLatch, poFirstFNC1MatchAI01,
poMicroPDF417Explicit901);

{ Defined in the pfmxPDF417Com unit }
TPDF417_Options = set of TPDF417_Option;
{ Defined in the pfmxMicroPDF417 unit }
TMicroPDF417_Options = TPDF417_Options;

function GetCheckSum(Data: TBytes; AllowEscape: Boolean; var InvalidIndex:
Integer; Options: TMicroPDF417_Options = []): TBytes; virtual;

2D Barcode FMX Components User Manual

260

Description:

The method returns the check sum of a barcode text that will be encoded into a series of MicroPDF417 structured append
symbols. The value will be used in the structured append block, and the structured append block will be used by each
symbol in the series of MicroPDF417 structured append symbols. See also the "Structured append" section in the
"TBarcodeFmx2D_MicroPDF417" article.

Parameters:

Data: TBytes; It's the original input text before division into the each symbol in the series of structured append
symbols. It is of type TBytes (it is in fact a byte array). You can use the method to caculate the check sum of a block
of binary (bytes) data.

See also the "Data" property article.

AllowEscape: Boolean; Specifies whether to allow users to insert the escape sequences to the Data parameter
value, in order to place the function characters and additional control information.

See also the "Escape sequences" section in the "TBarcodeFmx2D_MicroPDF417" article and the "AllowEscape"
property article.

InvalidIndex: Integer; If there is any invalid byte value in the barcode text that is specified by the Data parameter,
the parameter returns the position index of first invalid byte value, the index 0 denotes that the first byte is invalid.
Otherwise, it returns the Verify_OK (-1).

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid byte value is in the Data parameter, the return value is the position index of the
invalid byte value. The index 0 denotes that the first byte value is invalid.

Options: TPDF417_Options; The Options parameter is an advanced feature which allows low level control over
data encoding. The parameter can be used to change the encoding algorithm and meanings of some fucntion
codewords, in order to match the reader. The values that can be included in the Options parameter are defined in
the pPDF417Com unit.

See also the "Options" property article.

Return:

If the method succeeds, it returns the check sum value, it's a 16-bit word value in decimal format, encoded as ASCII bytes
sequence, in the TBytes array, and the InvalidIndex parameter returns the Verify_OK (-1). If the method fails, the
InvalidIndex parameter returns a position index of first invalid byte in the Data parameter, it's an integer value greater than
or equal to zero. See also the InvalidIndex parameter section above.

For example, the check sum is 1059, the return value is the byte array (TBytes):

($31{'1'}, $30{'0'}, $35{'5'}, $39{'9'})

The result array can be directly used as the check sum in the structured append block:

var
full_barcode_data, check_sum, structuredappend_block: TBytes;

2D Barcode FMX Components User Manual

261

invalid_index: Integer;
structuredappend_block_len, check_sum_len: Integer;

begin
full_barcode_data :=;
check_sum := GetCheckSum(full_barcode_data, False, invalid_index, []);
if invalid_index <> -1 then exit;
SetLength(structuredappend_block, 15);
structuredappend_block[0] := $5c{'\'};
structuredappend_block[1] := $73{'s'};
structuredappend_block[2] := $5b{'['};
structuredappend_block[3] := $35{'5'};
structuredappend_block[4] := $2c{','}; // Index: 5
structuredappend_block[5] := $30{'0'};
structuredappend_block[6] := $32{'2'};
structuredappend_block[7] := $39{'9'};
structuredappend_block[8] := $2c{','}; // File_ID: 029
structuredappend_block[9] := $2c{','}; // File_Name:
structuredappend_block[10] := $2c{','}; // Amount:
structuredappend_block[11] := $2c{','}; // Time_Stamp:
structuredappend_block[12] := $2c{','}; // Sender:
structuredappend_block[13] := $2c{','}; // Address:
structuredappend_block[14] := $2c{','}; // File_Size:
structuredappend_block_len := Length(structuredappend_block);
check_sum_len := Length(check_sum);
SetLength(structuredappend_block, structuredappend_block_len + check_sum_len +
1);

Move(PByte(@check_sum[0])^,
PByte(@structuredappend_block[structuredappend_block_len])^, check_sum_len);

structuredappend_block[structuredappend_block_len + check_sum_len] := $5d{']'};
//......

See also the "Sturctured append" section in the "TBarcodeFmx2D_MicroPDF417" article.

B.1.9 GetCheckSum
(TBarcodeFmx2D_PDF417)

Returns the check sum of a barcode text that will be encoded into each symbol in a Macro PDF417 set. The value will be
used in the macro PDF417 control information block, and the macro PDF417 control information block will be used by
each symbol in the Macro PDF417 set. There are two different overloading methods, Syntax 1 and Syntax 2:

Syntax 1: Returns the check sum value of a barcode text. The barcode text is specified in the Barcode parameter. It
is of type string.

The Barcode parameter is in fact an UnicodeString. By default, the unicode string will be converted to an UTF-8
bytes sequence (the BOM isn't included), then caculate its check sum. If you want to use other encoding scheme (for
example the ANSI, UTF-16), please convert it in the OnEncode event handle, or use the GetCheckSum (Syntax 2)
overloading method and specify the converted bytes sequence in its Data parameter. If you want to caculate the

2D Barcode FMX Components User Manual

262

check sum of a block of binary (bytes) data, please use the GetCheckSum (Syntax 2) overloading method.

Syntax 2: Returns the check sum value of a barcode text. The barcode text is specified in the Data parameter. It is
of type TBytes (it is in fact a byte array).

You can use the method to caculate the check sum of a block of binary (bytes) data.

See also the "Macro PDF417" section in the "TBarcodeFmx2D_PDF417" article.

B.1.9.1 GetCheckSum - Syntax 1
(TBarcodeFmx2D_PDF417)

Returns the check sum of a barcode text that will be encoded into each symbol in a Macro PDF417 set.

Syntax:

type
{ Defined in the pfmxPDF417Com unit }
TPDF417_Option = (poIgnoreShiftBeforeECI, poFirst903TextAlphaLatch,
poFirst904TextMixedLatch, po906TextAlphaLatch, po907TextAlphaLatch,
po908TextAlphaLatch, po910TextAlphaLatch, po912TextAlphaLatch,
po914TextAlphaLatch, po915TextAlphaLatch, poFirstFNC1MatchAI01,
poMicroPDF417Explicit901);

{ Defined in the pfmxPDF417Com unit }
TPDF417_Options = set of TPDF417_Option;

function GetCheckSum(Barcode: string; AllowEscape: Boolean; var InvalidIndex:
Integer; Options: TPDF417_Options = []): string; virtual;

Description:

The method returns the check sum of a barcode text that will be encoded into a Macro PDF417 set. The value will be used
in the macro PDF417 control information block, and the macro PDF417 control information block will be used by each
symbol in the Macro PDF417 set. See also the "Macro PDF417" section in the "TBarcodeFmx2D_PDF417" article.

Parameters:

Barcode: string; It's the original input text before division into the each symbol in the Macro PDF417 set. It is of type
string, and it is in fact an UnicodeString. By default, the unicode string will be converted to an UTF-8 bytes sequence
(the BOM isn't included), then caculate its check sum. If you want to use other encoding scheme (for example the
ANSI, UTF-16), please convert it in the OnEncode event handle, or use the GetCheckSum (Syntax 2) overloading
method and specify the converted bytes sequence in its Data parameter. If you want to caculate the check sum of a
block of binary (bytes) data, please use the GetCheckSum (Syntax 2) overloading method.

See also the "Barcode" property article.

AllowEscape: Boolean; Specifies whether to allow users to insert the escape sequences to the Barcode
parameter value, in order to place the function characters and additional control information.

See also the "Escape sequences" section in the "TBarcodeFmx2D_MicroPDF417" article and the "AllowEscape"
property article.

2D Barcode FMX Components User Manual

263

InvalidIndex: Integer; If there is any invalid character in the barcode text that is specified by the Barcode parameter,
the parameter returns the position index of first invalid character. Otherwise, it returns the Verify_OK (-1).

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats that an invalid byte value is in the suffix codes of
the bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_BeforeBarcode (-3) indicats that an invalid byte value is in the prefix codes of
the bytes sequence (for example the BOM).

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid character is in the barcode text, the return value is the position index of the invalid
charactere. For 32-bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first
character is invalid character. For iOS and Android platform, the index 0 denotes that the first character is
invalid character.

Options: TPDF417_Options; The Options parameter is an advanced feature which allows low level control over
data encoding. The parameter can be used to change the encoding algorithm and meanings of some fucntion
codewords, in order to match the reader. The values that can be included in the Options parameter are defined in
the pPDF417Com unit.

See also the "Options" property article.

Return:

If the method succeeds, it returns the check sum value, it's a 16-bit word value, in decimal string (UnicodeString) format,
and the InvalidIndex parameter returns Verify_OK (-1). If the method fails, the InvalidIndex parameter returns a position
index of first invalid character in the Barcode parameter. See also the InvalidIndex parameter section above.

The result string can be directly used as the check sum in the Macro PDF417 control information block. For example:

var
full_barcode, check_sum, macro_block: string;
invalid_index: Integer;

begin
full_barcode := '......';
check_sum := GetCheckSum(full_barcode, False, invalid_index, []);
if invalid_index <> -1 then exit;
macro_block := '\s[1,001287023,,5,2008-12-03 05:30:00,,USA,,' + check_sum + ']';
//.....

See also the "Macro PDF417" section in the "TBarcodeFmx2D_PDF417" article.

2D Barcode FMX Components User Manual

264

B.1.9.2 GetCheckSum - Syntax 2
(TBarcodeFmx2D_PDF417)

Returns the check sum of a barcode text that will be encoded into each symbol in a Macro PDF417 set.

Syntax:

type
{ Defined in the pfmxPDF417Com unit }
TPDF417_Option = (poIgnoreShiftBeforeECI, poFirst903TextAlphaLatch,
poFirst904TextMixedLatch, po906TextAlphaLatch, po907TextAlphaLatch,
po908TextAlphaLatch, po910TextAlphaLatch, po912TextAlphaLatch,
po914TextAlphaLatch, po915TextAlphaLatch, poFirstFNC1MatchAI01,
poMicroPDF417Explicit901);

{ Defined in the pfmxPDF417Com unit }
TPDF417_Options = set of TPDF417_Option;

function GetCheckSum(Data: TBytes; AllowEscape: Boolean; var InvalidIndex:
Integer; Options: TPDF417_Options = []): TBytes; virtual;

Description:

The method returns the check sum of a barcode text that will be encoded into a Macro PDF417 set. The value will be used
in the macro PDF417 control information block, and the macro PDF417 control information block will be used by each
symbol in the Macro PDF417 set. See also the "Macro PDF417" section in the "TBarcodeFmx2D_PDF417" article.

Parameters:

Data: TBytes; It's the original input text before division into the each symbol in the Macro PDF417 set. It is of type
TBytes (it is in fact a byte array). You can use the method to caculate the check sum of a block of binary (bytes) data.

See also the "Data" property article.

AllowEscape: Boolean; Specifies whether to allow users to insert the escape sequences to the Data parameter
value, in order to place the function characters and additional control information.

See also the "Escape sequences" section in the "TBarcodeFmx2D_MicroPDF417" article and the "AllowEscape"
property article.

InvalidIndex: Integer; If there is any invalid byte value in the barcode text that is specified by the Data parameter,
the parameter returns the position index of first invalid byte value, the index 0 denotes that the first byte is invalid.
Otherwise, it returns the Verify_OK (-1).

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid byte value is in the Data parameter, the return value is the position index of the
invalid byte value. The index 0 denotes that the first byte value is invalid.

2D Barcode FMX Components User Manual

265

Options: TPDF417_Options; The Options parameter is an advanced feature which allows low level control over
data encoding. The parameter can be used to change the encoding algorithm and meanings of some fucntion
codewords, in order to match the reader. The values that can be included in the Options parameter are defined in
the pPDF417Com unit.

See also the "Options" property article.

Return:

If the method succeeds, it returns the check sum value, it's a 16-bit word value in decimal format, encoded as ASCII bytes
sequence, in the TBytes array. And the InvalidIndex parameter returns the Verify_OK (-1). If the method fails, the
InvalidIndex parameter returns a position index of first invalid byte in the Data parameter, it's an integer value greater than
or equal to zero. See also the InvalidIndex parameter section above.

For example, the check sum is 1059, the return value is the byte array (TBytes):

($31{'1'}, $30{'0'}, $35{'5'}, $39{'9'})

The result array can be directly used as the check sum in the Macro PDF417 control information block:

var
full_barcode_data, check_sum, macro_block: TBytes;
invalid_index: Integer;
macro_block_len, check_sum_len: Integer;

begin
full_barcode_data :=;
check_sum := GetCheckSum(full_barcode_data, False, invalid_index, []);
if invalid_index <> -1 then exit;
SetLength(macro_block, 15);
macro_block[0] := $5c{'\'};
macro_block[1] := $73{'s'};
macro_block[2] := $5b{'['};
macro_block[3] := $35{'5'};
macro_block[4] := $2c{','}; // Index: 5
macro_block[5] := $30{'0'};
macro_block[6] := $32{'2'};
macro_block[7] := $39{'9'};
macro_block[8] := $2c{','}; // File_ID: 029
macro_block[9] := $2c{','}; // File_Name:
macro_block[10] := $2c{','}; // Amount:
macro_block[11] := $2c{','}; // Time_Stamp:
macro_block[12] := $2c{','}; // Sender:
macro_block[13] := $2c{','}; // Address:
macro_block[14] := $2c{','}; // File_Size:
macro_block_len := Length(macro_block);
check_sum_len := Length(check_sum);
SetLength(macro_block, macro_block_len + check_sum_len + 1);
Move(PByte(@check_sum[0])^, PByte(@macro_block[macro_block_len])^,
check_sum_len);

macro_block[macro_block_len + check_sum_len] := $5d{']'};
//......

See also the "Macro PDF417" section in the "TBarcodeFmx2D_PDF417" article.

2D Barcode FMX Components User Manual

266

B.1.10 GetParity
(TBarcodeFmx2D_QRCode)

Returns the parity value of a barcode text that will be encoded into a series of structured append symbols. The value will be
used in the structured append block, and the structured append block will be used by each symbol in the series of
QRCode structured append symbols. There are two different overloading methods, Syntax 1 and Syntax 2:

Syntax 1: Returns the parity value of a barcode text. The barcode text is specified in the Barcode parameter. It is of
type string.

The Barcode parameter is in fact an UnicodeString. By default, the unicode string will be converted to an UTF-8
bytes sequence (the BOM isn't included), then caculate its parity. If you want to use other encoding scheme (for
example the ANSI, UTF-16), please convert it in the OnEncode event handle, or use the GetParity (Syntax 2)
overloading method and specify the converted bytes sequence in its Data parameter. If you want to caculate the
parity of a block of binary (bytes) data, please use the GetParity (Syntax 2) overloading method.

Syntax 2: Returns the parity value of a barcode text. The barcode text is specified in the Data parameter. It is of
type TBytes (it is in fact a byte array).

You can use the method to caculate the parity of a block of binary (bytes) data.

See also the "Structured append" section in the "TBarcodeFmx2D_QRCode" article.

B.1.10.1 GetParity - Syntax 1
(TBarcodeFmx2D_QRCode)

Returns the parity value of a barcode text that will be encoded into a series of structured append symbols.

Syntax:

function GetParity(Barcode: string; AllowEscape: Boolean; var InvalidIndex:
Integer): Byte; virtual;

Description:

The method returns the parity value of a barcode text that will be encoded into a series of structured append symbols. The
value will be used in the structured append block, and the structured append block will be used by each symbol in the
series of QRCode structured append symbols. See also the "Structured append" section in the
"TBarcodeFmx2D_QRCode" article.

Parameters:

Barcode: string; It's the original input text before division into the each symbol in the series of structured append
symbols. It is of type string, and it is in fact an UnicodeString. By default, the unicode string will be converted to an
UTF-8 bytes sequence (the BOM isn't included), then caculate its parity value. If you want to use other encoding
scheme (for example the ANSI, UTF-16), please convert it in the OnEncode event handle, or use the GetParity

2D Barcode FMX Components User Manual

267

(Syntax 2) overloading method and specify the converted bytes sequence in its Data parameter. If you want to
caculate the parity value of a block of binary (bytes) data, please use the GetParity (Syntax 2) overloading method.

See also the "Barcode" property article.

AllowEscape: Boolean; Specifies whether to allow users to insert the escape sequences to the Barcode
parameter value, in order to place the function characters and additional control information.

See also the "Escape sequences" section in the "TBarcodeFmx2D_QRCode" article and the "AllowEscape"
property article.

InvalidIndex: Integer; If there is any invalid character in the barcode text that is specified by the Barcode parameter,
the parameter returns the position index of first invalid character. Otherwise, it returns the Verify_OK (-1).

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats that an invalid byte value is in the suffix codes of
the bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_BeforeBarcode (-3) indicats that an invalid byte value is in the prefix codes of
the bytes sequence (for example the BOM).

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid character is in the barcode text, the return value is the position index of the invalid
charactere. For 32-bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first
character is invalid character. For iOS and Android platform, the index 0 denotes that the first character is
invalid character.

Return:

If the method succeeds, it returns the parity value, it's an 8-bit byte value, and the InvalidIndex parameter returns Verify_OK
(-1). If the method fails, the InvalidIndex parameter returns a position index of first invalid character in the Barcode
parameter. See also the InvalidIndex parameter section above.

See also the "Structured append" section in the "TBarcodeFmx2D_QRCode" article.

B.1.10.2 GetParity - Syntax 2
(TBarcodeFmx2D_QRCode)

Returns the parity value of a barcode text that will be encoded into a series of structured append symbols.

Syntax:

2D Barcode FMX Components User Manual

268

function GetParity(Data: TBytes; AllowEscape: Boolean; var InvalidIndex: Integer):
Byte; virtual;

Description:

The method returns the parity value of a barcode text that will be encoded into a series of structured append symbols. The
value will be used in the structured append block, and the structured append block will be used by each symbol in the
series of QRCode structured append symbols. See also the "Structured append" section in the
"TBarcodeFmx2D_QRCode" article.

Parameters:

Data: TBytes; It's the original input text before division into the each symbol in the series of structured append
symbols. It is of type TBytes (it is in fact a byte array). You can use the method to caculate the check sum of a block
of binary (bytes) data.

See also the "Data" property article.

AllowEscape: Boolean; Specifies whether to allow users to insert the escape sequences to the Data parameter
value, in order to place the function characters and additional control information.

See also the "Escape sequences" section in the "TBarcodeFmx2D_QRCode" article and the "AllowEscape"
property article.

InvalidIndex: Integer; If there is any invalid byte value in the barcode text that is specified by the Data parameter,
the parameter returns the position index of first invalid byte value, the index 0 denotes that the first byte is invalid.
Otherwise, it returns the Verify_OK (-1).

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid byte value is in the Data parameter, the return value is the position index of the
invalid byte value. The index 0 denotes that the first byte value is invalid.

Return:

If the method succeeds, it returns the parity value, it's an 8-bit byte value, and the InvalidIndex parameter returns Verify_OK
(-1). If the method fails, the InvalidIndex parameter returns a position index of first invalid byte in the Data parameter, it's an
integer value greater than or equal to zero. See also the InvalidIndex parameter section above.

See also the "Structured append" section in the "TBarcodeFmx2D_QRCode" article.

B.1.11 Print

Prints specified barcode symbol to printer. There are several different overloading methods, Syntax 1, Syntax 2, and
Syntax 3:

2D Barcode FMX Components User Manual

269

Syntax 1: Prints the barcode symbol that is specified by the properties of this barcode component.

Syntax 2: Prints the barcode symbol that is specified by the parameters of this method. The barcode text is
specified in the Barcode parameter. It is of type string.

The Barcode parameter is in fact an UnicodeString. By default, the unicode string will be converted to an UTF-8
bytes sequence (the BOM isn't included), then be encoded into the barcode symbol. If you want to use other
encoding scheme (for example the ANSI, UTF-16), please convert it in the OnEncode event handle, or use the Print
(Syntax 3) overloading method and specify the converted bytes sequence in its Data parameter. If you want to
encode a block of binary (bytes) data, please use the Print (Syntax 3) overloading method.

Syntax 3: Prints the barcode symbol that is specified by the parameters of this method. The barcode text is
specified in the Data parameter. It is of type TBytes (it is in fact a byte array).

You can use the method if you want to encode a block of binary (bytes) data into a barcode symbol.

B.1.11.1 Print - Syntax 1

Prints a barcode symbol to printer. The barcode symbol is specified by the properties of this barcode component. Please
use the method between Printer.BeginDoc and Printer.EndDoc methods.

Syntax:

function Print(Left, Top, Module: Single; Angle: Single = -1; BarcodeWidth: Single
= 0; BarcodeHeight: Single = 0): Integer; overload; virtual;

Description:

Prints current barcode symbol that is specified by the properties of this barcode component to the printer.

Parameters:

Left: Single; Specifies the margin between the rotated barcode symbol and the left side of the paper in millimeters
in the horizontal direction. If the quiet zones are printed (please read the ShowQuietZone property about whether or
not the quiet zones will be printed), they are included in the barcode symbol. See diagram (the SpaceColor property
is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

270

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the SpaceColor property is set to
claSilver in order to accentuate the quiet zones):

See also the "LeftMargin" property.

Top: Single; Specifies the margin between the rotated barcode symbol and the top side of the paper in millimeters
in the vertical direction. If the quiet zones are printed (please read the ShowQuietZone property about whether or not
the quiet zones will be printed), they are included in the barcode symbol. See diagram (the SpaceColor property is
set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

271

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the SpaceColor property is set to
claSilver in order to accentuate the quiet zones):

See also the "TopMargin" property.

Module: Single; Specifies the module size in millimeters.

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module
width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the
center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

2D Barcode FMX Components User Manual

272

If any one of the BarcodeWidth and BarcodeHeight parameters is provided and it isn't zero, the value of Module
parameter will be ignored, the module size will be calculated based on the BarcodeWidth parameter value or the
BarcodeHeight parmeter value. If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero,
only the BarcodeWidth parameter value will be used to calculate the module size, the BarcodeHeight parameter
value will be ignored.

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are printed,
please read the ShowQuietZone property about whether or not the quiet zones will be printed) anticlockwise. See
diagram (the SpaceColor property is set to claSilver in order to accentuate the quiet zones):

The parameter defaults to -1 if the Angle parameter is not provided, and the barcode symbol will be rotated based
on the value of the Orientation property:

boLeftRight: 0 degrees

boRightLeft: 180 degrees

boTopBottom: 270 degrees

boBottomTop: 90 degrees

If you want to use the -1 degrees, the 359 degrees can be used instead.

Opacity: Single, Specifies the transparency-level of entire barcode symbol, where 1 is not transparant at all, 0.5 is
50% see-through, and 0 is completely transparent.

The parameter defaults to -1 if it is not provided, and the value of Opacity property will be used.

Note, if the Inversed property is set to false, you can use the alpha channel of the SpaceColor property value to
specify the transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha
channel of the BarColor property value to specify the transparency-level of foreground color (bars or dark modules).
If the Inversed property is set to true, you can use the alpha channel of the BarColor property value to specify the
transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha channel of the
SpaceColor property value to specify the transparency-level of foreground color (bars or dark modules).

BarcodeWidth: Single, Specifies the barcode symbol width (the distance between the beginning and end of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone property about
whether or not the quiet zones will be printed), the leading quiet zone and the trailing quiet zone are included in the
barcode symbol. See diagram (the SpaceColor property is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

273

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the SpaceColor property is set to
claSilver in order to accentuate the quiet zones):

Note, if the parameter is provided and it isn't zero, the values of Module and BarcodeHeight parameters will be
ignored, the module size will be calculated based on the BarcodeWidth parameter value. If both BarcodeHeight and
BarcodeWidth parameters aren't provided or they are all zero, the barcode symbol width will be determined by the
Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

See also the "BarcodeWidth" property.

BarcodeHeight: Single, Specifies the barcode symbol height (the distance between the top and bottom of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone property about
whether or not the quiet zones will be printed), the top quiet zone and the bottom quiet zone are included in the
barcode symbol. See diagram (the SpaceColor property is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

274

Note, if the parameter is provided and it isn't zero, and the BarcodeWidth parameter isn't provided or it's zero, the
value of Module parameter will be ignored, the module size will be calculated based on the BarcodeHeight
parameter value. If both BarcodeHeight and BarcodeWidth parameters aren't provided or they are all zero, the
barcode symbol height will be determined by the Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

See also the "BarcodeHeight" property.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

If you use the Barcode property to specify the barcode text, and use the OnEncode event handle to encode the
barcode text to a bytes sequence in your own encoding scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats
that an invalid byte value is in the suffix codes of the bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the Barcode property to specify the barcode text, and use the OnEncode event handle to encode the
barcode text to a bytes sequence in your own encoding scheme, the Verify_InvalidIndex_BeforeBarcode (-3)
indicats that an invalid byte value is in the prefix codes of the bytes sequence (for example the BOM).

Verify_InvalidLength (-2):

If you use the Barcode property to specify the barcode text, it indicates that the length of Barcode property value is
invalid, also the OnInvalidLength event will occur.

If you use the Data property to specify the barcode text, it indicates that the length of Data property value is invalid,
also the OnInvalidDataLength event will occur.

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

If you use the Barcode property to specify the barcode text, it indicates that an invalid character is in the barcode
text, also the OnInvalidChar event will occur. The return value is the position index of the invalid charactere. For 32-
bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first character is invalid
character. For iOS and Android platform, the index 0 denotes that the first character is invalid character.

If you use the Data property to specify the barcode data, it indicates that an invalid byte value is in the barcode data,
also the OnInvalidDataChar event will occur. The return value is the position index of the invalid byte value. The index
0 denotes that the first byte value is invalid byte value.

Note:

Pelase use the method between Printer.BeginDoc and Printer.EndDoc methods. For example:

Printer.ActivePrinter.SelectDPI(600, 600);
Printer.BeginDoc;
... { Print other content }

2D Barcode FMX Components User Manual

275

Barcode_QRCode1.Print(...); { Print the barcode symbol }
... { Print other content }
Printer.EndDoc;

B.1.11.2 Print - Syntax 2

Prints a barcode symbol to printer. The barcode symbol is specified by the parameters of this method. Please use the
method between the Printer.BeginDoc and Printer.EndDoc methods.

Syntax:

function Print(Barcode: string; BarColor, SpaceColor: TAlphaColor; ShowQuietZone:
Boolean; Left, Top, Module: Single; Angle: Single = 0; Opacity: Single = 1;
BarcodeWidth: Single = 0; BarcodeHeight: Single = 0): Integer; overload;
virtual;

Description:

Prints a barcode symbol that is specified by the parameters of this method to the printer.

Parameters:

Barcode: String; Specifies the barcode text. It is of type string, and it is in fact an UnicodeString. By default, the
unicode string will be converted to an UTF-8 bytes sequence (the BOM isn't included), then be encoded into the
barcode symbol. If you want to use other encoding scheme (for example the ANSI, UTF-16), please convert it in the
OnEncode event handle, or use the Print (Syntax 3) overloading method and specify the converted bytes sequence
in its Data parameter. If you want to encode a block of binary (bytes) data, please use the Print (Syntax 3)
overloading method.

For the TBarcodeFmx2D_RSS14 and TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit
is set to true, the check digit doesn't need to be included in the parameter, otherwise the check digit can be
specified by you in the parameter.

See also the "Barcode" and "Data" properties.

BarColor: TAlphaColor; In general, the Inversed property is set to false. In this case, the parameters specifies the
color for all bars (Stacked 2D barcode symbology and Linear 1D barcode symbology) or dark modules (Matrix 2D
barcode symbology) in the barcode symbol.

If the Inversed property is set to true, it specifies the color for all spaces (Stacked 2D barcode symbology and Linear
1D barcode symbology) or light modules (Matrix 2D barcode symbology) in the barcode symbol. Also, if the
ShowQuietZone parameter value is set to true, the leading quiet zone, trailing quiet zone, top quiet zone, and bottom
quiet zone are printed using the color.

The alpha channel of the BarColor parameter is supported.

See also the "BarColor" property.

SpaceColor: TAlphaColor; In general, the Inversed property is set to false. In this case, the parameters specifies
the color for all spaces (Stacked 2D barcode symbology and Linear 1D barcode symbology) or light modules
(Matrix 2D barcode symbology) in the barcode symbol. Also, if the ShowQuietZone parameter value is set to true,

2D Barcode FMX Components User Manual

276

the leading quiet zone, trailing quiet zone, top quiet zone, and bottom quiet zone are printed using the color.

If the Inversed property is set to true, it specifies the color for all bars (Stacked 2D barcode symbology and Linear
1D barcode symbology) or dark modules (Matrix 2D barcode symbology) in the barcode symbol.

The alpha channel of the SpaceColor parameter is supported.

See also the "SpaceColor" property.

ShowQuietZone: Boolean; Specifies whether to print the leading quiet zone, trailing quiet zone, top quiet zone, and
bottom quiet zone. If the parameter value is set to true, these quiet zones are printed. Otherwise, they don't be
printed. You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties to
specify the size of these quiet zones in modules. See diagram (the SpaceColor parameter is set to claSilver in
order to accentuate the quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone will be printed
always, even if the ShowQuietZone parameter value is set to false. See diagram (the SpaceColor parameter is set
to claSilver in order to accentuate the quiet zones):

In general, the Inversed property is set to false. In this case, these quiet zones are printed using the color specified
by SpaceColor parameter. If the Inversed property is set to true, these quiet zones are printed using the color
specified by BarColor parameter.

See also the "ShowQuietZone" property.

Left: Single; Specifies the margin between the rotated barcode symbol and the left side of the paper in millimeters
in the horizontal direction. If the quiet zones are printed (please read the ShowQuietZone parameter about whether
or not the quiet zones will be printed), they are included in the barcode symbol. See diagram (the SpaceColor
parameter is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

277

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the SpaceColor parameter is
set to claSilver in order to accentuate the quiet zones):

See also the "LeftMargin" property.

Top: Single; Specifies the margin between the rotated barcode symbol and the top side of the paper in millimeters
in the vertical direction. If the quiet zones are printed (please read the ShowQuietZone parameter about whether or
not the quiet zones will be printed), they are included in the barcode symbol. See diagram (the SpaceColor
parameter is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

278

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the SpaceColor parameter is
set to claSilver in order to accentuate the quiet zones):

See also the "TopMargin" property.

Module: Single; Specifies the module size in millimeters.

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module
width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the
center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

2D Barcode FMX Components User Manual

279

If any one of the BarcodeWidth and BarcodeHeight parameters is provided and it isn't zero, the value of Module
parameter will be ignored, the module size will be calculated based on the BarcodeWidth parameter value or the
BarcodeHeight parmeter value. If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero,
only the BarcodeWidth parameter value will be used to calculate the module size, the BarcodeHeight parameter
value will be ignored.

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are printed,
please read the ShowQuietZone parameter section above about whether or not the quiet zones will be printed)
anticlockwise. It defaults to 0 if the parameter is not provided, meaning left to right horizontal direction. See diagram
(the SpaceColor parameter value is set to claSilver in order to accentuate the quiet zones):

Opacity: Single, Specifies the transparency-level of entire barcode symbol, where 1 is not transparant at all, 0.5 is
50% see-through, and 0 is completely transparent.

The parameter defaults to 1 if it is not provided, meaning not transparant at all.

Note, if the Inversed property is set to false, you can use the alpha channel of the SpaceColor parameter value to
specify the transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha
channel of the BarColor parameter value to specify the transparency-level of foreground color (bars or dark
modules). If the Inversed property is set to true, you can use the alpha channel of the BarColor parameter value to
specify the transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha
channel of the SpaceColor parameter value to specify the transparency-level of fore-ground color (bars or dark
modules).

BarcodeWidth: Single, Specifies the barcode symbol width (the distance between the beginning and end of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone parameter section
above about whether or not the quiet zones will be printed), the leading quiet zone and the trailing quiet zone are
included in the barcode symbol. See diagram (the SpaceColor parameter is set to claSilver in order to accentuate
the quiet zones):

2D Barcode FMX Components User Manual

280

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the SpaceColor parameter is
set to claSilver in order to accentuate the quiet zones):

Note, if the parameter is provided and it isn't zero, the values of Module and BarcodeHeight parameters will be
ignored, the module size will be calculated based on the BarcodeWidth parameter value. If both BarcodeHeight and
BarcodeWidth parameters aren't provided or they are all zero, the barcode symbol width will be determined by the
Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

See also the "BarcodeWidth" property.

BarcodeHeight: Single, Specifies the barcode symbol height (the distance between the top and bottom of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone parameter section
above about whether or not the quiet zones will be printed), the top quiet zone and the bottom quiet zone are
included in the barcode symbol. See diagram (the SpaceColor parameter is set to claSilver in order to accentuate
the quiet zones):

Note, if the parameter is provided and it isn't zero, and the BarcodeWidth parameter isn't provided or it's zero, the
value of Module parameter will be ignored, the module size will be calculated based on the BarcodeHeight
parameter value. If both BarcodeHeight and BarcodeWidth parameters aren't provided or they are all zero, the
barcode symbol height will be determined by the Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

2D Barcode FMX Components User Manual

281

See also the "BarcodeHeight" property.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats that an invalid byte value is in the suffix codes of the
bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_BeforeBarcode (-3) indicats that an invalid byte value is in the prefix codes of the
bytes sequence (for example the BOM).

Verify_InvalidLength (-2):

It indicates that the length of Barcode parameter value is invalid.

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid character is in the barcode text, the return value is the position index of the invalid
charactere. For 32-bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first character
is invalid character. For iOS and Android platform, the index 0 denotes that the first character is invalid character.

Note:

Pelase use the method between Printer.BeginDoc and Printer.EndDoc methods. For example:

Printer.ActivePrinter.SelectDPI(600, 600);
Printer.BeginDoc;
... { Print other content }
Barcode_QRCode1.Print(...); { Print the barcode symbol }
... { Print other content }
Printer.EndDoc;

B.1.11.3 Print - Syntax 3

Prints a barcode symbol to printer. The barcode symbol is specified by the parameters of this method. Please use the
method between the Printer.BeginDoc and Printer.EndDoc methods.

Syntax:

function Print(Data: TBytes; BarColor, SpaceColor: TAlphaColor; ShowQuietZone:
Boolean; Left, Top, Module: Single; Angle: Single = 0; Opacity: Single = 1;

2D Barcode FMX Components User Manual

282

BarcodeWidth: Single = 0; BarcodeHeight: Single = 0): Integer; overload;
virtual;

Description:

Prints a barcode symbol that is specified by the parameters of this method to the printer.

Parameters:

Data: TBytes; Specifies the barcode text. It is of type TBytes (it is in fact a byte array).

You can specify a block of binary (bytes) data to the parameter, in order to encode it into a barcode symbol.

For the TBarcodeFmx2D_RSS14 and TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit
is set to true, the check digit doesn't need to be included in the parameter, otherwise the check digit can be
specified by you in the parameter.

See also the "Barcode" and "Data" properties.

BarColor: TAlphaColor; In general, the Inversed property is set to false. In this case, the parameters specifies the
color for all bars (Stacked 2D barcode symbology and Linear 1D barcode symbology) or dark modules (Matrix 2D
barcode symbology) in the barcode symbol.

If the Inversed property is set to true, it specifies the color for all spaces (Stacked 2D barcode symbology and Linear
1D barcode symbology) or light modules (Matrix 2D barcode symbology) in the barcode symbol. Also, if the
ShowQuietZone parameter value is set to true, the leading quiet zone, trailing quiet zone, top quiet zone, and bottom
quiet zone are printed using the color.

The alpha channel of the BarColor parameter is supported.

See also the "BarColor" property.

SpaceColor: TAlphaColor; In general, the Inversed property is set to false. In this case, the parameters specifies
the color for all spaces (Stacked 2D barcode symbology and Linear 1D barcode symbology) or light modules
(Matrix 2D barcode symbology) in the barcode symbol. Also, if the ShowQuietZone parameter value is set to true,
the leading quiet zone, trailing quiet zone, top quiet zone, and bottom quiet zone are printed using the color.

If the Inversed property is set to true, it specifies the color for all bars (Stacked 2D barcode symbology and Linear
1D barcode symbology) or dark modules (Matrix 2D barcode symbology) in the barcode symbol.

The alpha channel of the SpaceColor parameter is supported.

See also the "SpaceColor" property.

ShowQuietZone: Boolean; Specifies whether to print the leading quiet zone, trailing quiet zone, top quiet zone, and
bottom quiet zone in the barcode symbol. If the parameter value is set to true, these quiet zones are printed.
Otherwise, they don't be printed. You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and
BottomQuietZone properties to specify the size of these quiet zones in modules. See diagram (the SpaceColor
parameter is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

283

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone will be printed
always, even if the ShowQuietZone parameter value is set to false. See diagram (the SpaceColor parameter is set
to claSilver in order to accentuate the quiet zones):

In general, the Inversed property is set to false. In this case, these quiet zones are printed using the color specified
by SpaceColor parameter. If the Inversed property is set to true, these quiet zones are printed using the color
specified by BarColor parameter.

See also the "ShowQuietZone" property.

Left: Single; Specifies the margin between the rotated barcode symbol and the left side of the paper in millimeters
in the horizontal direction. If the quiet zones are printed (please read the ShowQuietZone parameter about whether
or not the quiet zones will be printed), they are included in the barcode symbol. See diagram (the SpaceColor
parameter is set to claSilver in order to accentuate the quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the SpaceColor parameter is
set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

284

See also the "LeftMargin" property.

Top: Single; Specifies the margin between the rotated barcode symbol and the top side of the paper in millimeters
in the vertical direction. If the quiet zones are printed (please read the ShowQuietZone parameter about whether or
not the quiet zones will be printed), they are included in the barcode symbol. See diagram (the SpaceColor
parameter is set to claSilver in order to accentuate the quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the SpaceColor parameter is
set to claSilver in order to accentuate the quiet zones):

See also the "TopMargin" property.

Module: Single; Specifies the module size in millimeters.

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module
width and height. See diagram:

2D Barcode FMX Components User Manual

285

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the
center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

If any one of the BarcodeWidth and BarcodeHeight parameters is provided and it isn't zero, the value of Module
parameter will be ignored, the module size will be calculated based on the BarcodeWidth parameter value or the
BarcodeHeight parmeter value. If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero,
only the BarcodeWidth parameter value will be used to calculate the module size, the BarcodeHeight parameter
value will be ignored.

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are printed,
please read the ShowQuietZone parameter section above about whether or not the quiet zones will be printed)
anticlockwise. It defaults to 0 if the parameter is not provided, meaning left to right horizontal direction. See diagram
(the SpaceColor parameter value is set to claSilver in order to accentuate the quiet zones):

Opacity: Single, Specifies the transparency-level of entire barcode symbol, where 1 is not transparant at all, 0.5 is
50% see-through, and 0 is completely transparent.

The parameter defaults to 1 if it is not provided, meaning not transparant at all.

Note, if the Inversed property is set to false, you can use the alpha channel of the SpaceColor parameter value to
specify the transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha
channel of the BarColor parameter value to specify the transparency-level of foreground color (bars or dark
modules). If the Inversed property is set to true, you can use the alpha channel of the BarColor parameter value to

2D Barcode FMX Components User Manual

286

specify the transparency-level of bakcground color (spaces or light modules, and quiet zones), and use the alpha
channel of the SpaceColor parameter value to specify the transparency-level of fore-ground color (bars or dark
modules).

BarcodeWidth: Single, Specifies the barcode symbol width (the distance between the beginning and end of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone parameter section
above about whether or not the quiet zones will be printed), the leading quiet zone and the trailing quiet zone are
included in the barcode symbol. See diagram (the SpaceColor parameter is set to claSilver in order to accentuate
the quiet zones):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the SpaceColor parameter is
set to claSilver in order to accentuate the quiet zones):

Note, if the parameter is provided and it isn't zero, the values of Module and BarcodeHeight parameters will be
ignored, the module size will be calculated based on the BarcodeWidth parameter value. If both BarcodeHeight and
BarcodeWidth parameters aren't provided or they are all zero, the barcode symbol width will be determined by the
Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

See also the "BarcodeWidth" property.

BarcodeHeight: Single, Specifies the barcode symbol height (the distance between the top and bottom of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone parameter section
above about whether or not the quiet zones will be printed), the top quiet zone and the bottom quiet zone are
included in the barcode symbol. See diagram (the SpaceColor parameter is set to claSilver in order to accentuate
the quiet zones):

2D Barcode FMX Components User Manual

287

Note, if the parameter is provided and it isn't zero, and the BarcodeWidth parameter isn't provided or it's zero, the
value of Module parameter will be ignored, the module size will be calculated based on the BarcodeHeight
parameter value. If both BarcodeHeight and BarcodeWidth parameters aren't provided or they are all zero, the
barcode symbol height will be determined by the Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

See also the "BarcodeHeight" property.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidLength (-2):

It indicates that the length of Data parameter value is invalid.

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid byte value is in the Data parameter, the return value is the position index of the invalid byte
value. The index 0 denotes that the first byte value is invalid.

Note:

Pelase use the method between Printer.BeginDoc and Printer.EndDoc methods. For example:

Printer.ActivePrinter.SelectDPI(600, 600);
Printer.BeginDoc;
... { Print other content }
Barcode_QRCode1.Print(...); { Print the barcode symbol }
... { Print other content }

2D Barcode FMX Components User Manual

288

Printer.EndDoc;

B.1.12 PrintSize

Returns actual horizontal width and vertical height of a rotated barcode symbol in millimeters. There are several different
overloading methods, Syntax 1, Syntax 2, and Syntax 3:

Syntax 1: Returns the actual print horizontal width and vertical height of the rotated barcode symbol that is specified
by the properties of this barcode component.

Syntax 2: Returns the actual print horizontal width and vertical height of the rotated barcode symbol that is specified
by the parameters of this method. The barcode text is specified in the Barcode parameter. It is of type string.

The Barcode parameter is in fact an UnicodeString. By default, the unicode string will be converted to an UTF-8
bytes sequence (the BOM isn't included), then be encoded into the barcode symbol. If you want to use other
encoding scheme (for example the ANSI, UTF-16), please convert it in the OnEncode event handle, or use the
PrintSize (Syntax 3) overloading method and specify the converted bytes sequence in its Data parameter. If you
want to encode a block of binary (bytes) data, please use the PrintSize (Syntax 3) overloading method.

Syntax 3: Returns the actual print horizontal width and vertical height of the rotated barcode symbol that is specified
by the parameters of this method. The barcode text is specified in the Data parameter. It is of type TBytes (it is in
fact a byte array).

You can use the method if you want to encode a block of binary (bytes) data into a barcode symbol.

B.1.12.1 PrintSize - Syntax 1

Returns actual horizontal width and vertical height of a rotated barcode symbol in millimeters. The barcode symbol is
specified by the properties of this barcode component.

Syntax:

function PrintSize(var Width, Height, SymbolWidth, SymbolHeight: Single; Module:
Single; Angle: Single = -1; BarcodeWidth: Single = 0; BarcodeHeight: Single = 0;
HDPI: Integer = 0; VDPI: Integer = 0): Integer; overload; virtual;

Description:

The method returns the actual horizontal width and vertical height of a rotated barcode symbol that is specified by
properties of this barcode component, in millimeters.

Please use the method between the Printer.BeginDoc and Printer.EndDoc methods if the HDPI or VDPI parameter is set
to 0.

Parameters:

Width: Single; Returns the horizontal width of the rotated barcode symbol in millimeters. The value is calculated

2D Barcode FMX Components User Manual

289

based on the module size. You can use one of the Module, BarcodeWidth and BarcodeHeight parameters to
specify the module size.

If the quiet zones are printed (please read the ShowQuietZone property about whether or not the quiet zones will be
printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in claSilver color in
order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

Height: Single; Returns the vertical height of the rotated barcode symbol in millimeters. The value is calculated
based on the module size. You can use one of the Module, BarcodeWidth and BarcodeHeight parameters to
specify the module size.

If the quiet zones are printed (please read the ShowQuietZone property about whether or not the quiet zones will be
printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in claSilver color in
order to accentuate them):

2D Barcode FMX Components User Manual

290

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

SymbolWidth: Single; Returns the distance between the leading and trailing of the rotated barcode symbol in
millimeter. The value is calculated based on the module size. You can use one of the Module, BarcodeWidth and
BarcodeHeight parameters to specify the module size.

If the quiet zones are printed (please read the ShowQuietZone property about whether or not the quiet zones will be
printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in claSilver color in
order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the quiet zones are printed in

2D Barcode FMX Components User Manual

291

claSilver color in order to accentuate them):

See also the "BarcodeWidth" property.

SymbolHeight: Single; Returns the distance between the top and bottom of the rotated barcode symbol in
millimeter. The value is calculated based on the module size. You can use one of the Module, BarcodeWidth and
BarcodeHeight parameters to specify the module size.

If the quiet zones are printed (please read the ShowQuietZone property about whether or not the quiet zones will be
printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in claSilver color in
order to accentuate them):

See also the "BarcodeHeight" property.

Module: Double; Specifies the module size in millimeters.

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module
width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the

2D Barcode FMX Components User Manual

292

center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

If any one of the BarcodeWidth and BarcodeHeight parameters is provided and it isn't zero, the value of Module
parameter will be ignored, the module size will be calculated based on the BarcodeWidth parameter value or the
BarcodeHeight parmeter value. If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero,
only the BarcodeWidth parameter value will be used to calculate the module size, the BarcodeHeight parameter
value will be ignored.

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are printed,
please read the ShowQuietZone property about whether or not the quiet zones will be printed) anticlockwise. See
diagram (the SpaceColor property is set to claSilver in order to accentuate the quiet zones):

The parameter defaults to -1 if the Angle parameter is not provided, and the barcode symbol will be rotated based
on the value of the Orientation property:

boLeftRight: 0 degrees

boRightLeft: 180 degrees

boTopBottom: 270 degrees

boBottomTop: 90 degrees

If you want to use the -1 degrees, the 359 degrees can be used instead.

BarcodeWidth: Single, Specifies the barcode symbol width (the distance between the beginning and end of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone property about
whether or not the quiet zones will be printed), the leading quiet zone and the trailing quiet zone are included in the
barcode symbol. See diagram (the SpaceColor property is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

293

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the SpaceColor property is set to
claSilver in order to accentuate the quiet zones):

Note, if the parameter is provided and it isn't zero, the values of Module and BarcodeHeight parameters will be
ignored, the module size will be calculated based on the BarcodeWidth parameter value. If both BarcodeHeight and
BarcodeWidth parameters aren't provided or they are all zero, the barcode symbol width will be determined by the
Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

See also the "BarcodeWidth" property.

BarcodeHeight: Single, Specifies the barcode symbol height (the distance between the top and bottom of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone property about
whether or not the quiet zones will be printed), the top quiet zone and the bottom quiet zone are included in the
barcode symbol. See diagram (the SpaceColor property is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

294

Note, if the parameter is provided and it isn't zero, and the BarcodeWidth parameter isn't provided or it's zero, the
value of Module parameter will be ignored, the module size will be calculated based on the BarcodeHeight
parameter value. If both BarcodeHeight and BarcodeWidth parameters aren't provided or they are all zero, the
barcode symbol height will be determined by the Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

See also the "BarcodeHeight" property.

HDPI: Integer, Specifies the horizontal resolution of printer in DPI (dots per inch).

It defaults to 0 if the HDPI is not provided, and the horizontal resolution will be obtained from your printer.

VDPI: Integer, Specifies the vertical resolution of printer in DPI (dots per inch).

It defaults to 0 if the VDPI is not provided, and the vertical resolution will be obtained from your printer.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

If you use the Barcode property to specify the barcode text, and use the OnEncode event handle to encode the
barcode text to a bytes sequence in your own encoding scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats
that an invalid byte value is in the suffix codes of the bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the Barcode property to specify the barcode text, and use the OnEncode event handle to encode the
barcode text to a bytes sequence in your own encoding scheme, the Verify_InvalidIndex_BeforeBarcode (-3)
indicats that an invalid byte value is in the prefix codes of the bytes sequence (for example the BOM).

Verify_InvalidLength (-2):

If you use the Barcode property to specify the barcode text, it indicates that the length of Barcode property value is
invalid, also the OnInvalidLength event will occur.

If you use the Data property to specify the barcode text, it indicates that the length of Data property value is invalid,
also the OnInvalidDataLength event will occur.

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

If you use the Barcode property to specify the barcode text, it indicates that an invalid character is in the barcode
text, also the OnInvalidChar event will occur. The return value is the position index of the invalid charactere. For 32-
bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first character is invalid
character. For iOS and Android platform, the index 0 denotes that the first character is invalid character.

If you use the Data property to specify the barcode data, it indicates that an invalid byte value is in the barcode data,
also the OnInvalidDataChar event will occur. The return value is the position index of the invalid byte value. The index
0 denotes that the first byte value is invalid byte value.

2D Barcode FMX Components User Manual

295

B.1.12.2 PrintSize - Syntax 2

Returns the actual horizontal width and vertical height of a rotated barcode symbol in millimeters. The barcode symbol is
specified by the parameters of this method.

Syntax:

function PrintSize(var Width, Height, SymbolWidth, SymbolHeight: Single; Barcode:
string; ShowQuietZone: Boolean; Module: Single; Angle: Single = 0; BarcodeWidth:
Single = 0; BarcodeHeight: Single = 0; HDPI: Integer = 0; VDPI: Integer = 0):
Integer; overload; virtual;

Description:

The method returns the actual horizontal width and vertical height of a rotated barcode symbol that is specified by
parameters of this method, in millimeters.

Please use the method between the Printer.BeginDoc and Printer.EndDoc methods if the HDPI or VDPI parameter is set
to 0.

Parameters:

Width: Single; Returns the horizontal width of the rotated barcode symbol in millimeters. The value is calculated
based on the module size. You can use one of the Module, BarcodeWidth and BarcodeHeight parameters to
specify the module size.

If the quiet zones are printed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

2D Barcode FMX Components User Manual

296

Height: Single; Returns the vertical height of the rotated barcode symbol in millimeters. The value is calculated
based on the module size. You can use one of the Module, BarcodeWidth and BarcodeHeight parameters to
specify the module size.

If the quiet zones are printed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

SymbolWidth: Single; Returns the distance between the leading and trailing of the rotated barcode symbol in
millimeter. The value is calculated based on the module size. You can use one of the Module, BarcodeWidth and

2D Barcode FMX Components User Manual

297

BarcodeHeight parameters to specify the module size.

If the quiet zones are printed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

See also the "BarcodeWidth" property.

SymbolHeight: Single; Returns the distance between the top and bottom of the rotated barcode symbol in
millimeter. The value is calculated based on the module size. You can use one of the Module, BarcodeWidth and
BarcodeHeight parameters to specify the module size.

If the quiet zones are printed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

2D Barcode FMX Components User Manual

298

See also the "BarcodeHeight" property.

Barcode: String; Specifies the barcode text. It is of type string, and it is in fact an UnicodeString. By default, the
unicode string will be converted to an UTF-8 bytes sequence (the BOM isn't included), then be encoded into the
barcode symbol. If you want to use other encoding scheme (for example the ANSI, UTF-16), please convert it in the
OnEncode event handle, or use the PrintSize (Syntax 3) overloading method and specify the converted bytes
sequence in its Data parameter. If you want to encode a block of binary (bytes) data, please use the PrintSize
(Syntax 3) overloading method.

For the TBarcodeFmx2D_RSS14 and TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit
is set to true, the check digit doesn't need to be included in the parameter, otherwise the check digit can be
specified by you in the parameter.

See also the "Barcode" and "Data" properties.

ShowQuietZone: Boolean; Specifies whether to include the leading quiet zone, trailing quiet zone, top quiet zone,
and bottom quiet zone in the barcode symbol. If the parameter value is set to true, these quiet zones are included.
Otherwise, they don't be included. You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and
BottomQuietZone properties to specify the size of these quiet zones in modules. See diagram (the quiet zones are
printed in claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone will be included
always, even if the ShowQuietZone parameter value is set to false. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

2D Barcode FMX Components User Manual

299

See also the "ShowQuietZone" property.

Module: Single; Specifies the module size in millimeters.

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module
width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the
center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

If any one of the BarcodeWidth and BarcodeHeight parameters is provided and it isn't zero, the value of Module
parameter will be ignored, the module size will be calculated based on the BarcodeWidth parameter value or the
BarcodeHeight parmeter value. If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero,
only the BarcodeWidth parameter value will be used to calculate the module size, the BarcodeHeight parameter
value will be ignored.

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are printed,
please read the ShowQuietZone parameter section above about whether or not the quiet zones will be printed)
anticlockwise. It defaults to 0 if the parameter is not provided, meaning left to right horizontal direction. See diagram
(the quiet zones are printed in claSilver color in order to accentuate them):

2D Barcode FMX Components User Manual

300

BarcodeWidth: Single, Specifies the barcode symbol width (the distance between the beginning and end of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone parameter section
above about whether or not the quiet zones will be printed), the leading quiet zone and the trailing quiet zone are
included in the barcode symbol. See diagram (the quiet zones are printed in claSilver color in order to accentuate
them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter section above is set to false. See diagram (the quiet zones
are printed in claSilver color in order to accentuate them):

Note, if the parameter is provided and it isn't zero, the values of Module and BarcodeHeight parameters will be
ignored, the module size will be calculated based on the BarcodeWidth parameter value. If both BarcodeHeight and
BarcodeWidth parameters aren't provided or they are all zero, the barcode symbol width will be determined by the
Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

See also the "BarcodeWidth" property.

BarcodeHeight: Single, Specifies the barcode symbol height (the distance between the top and bottom of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone parameter section
above about whether or not the quiet zones will be printed), the top quiet zone and the bottom quiet zone are
included in the barcode symbol. See diagram (the SpaceColor property is set to claSilver in order to accentuate the
quiet zones):

2D Barcode FMX Components User Manual

301

Note, if the parameter is provided and it isn't zero, and the BarcodeWidth parameter isn't provided or it's zero, the
value of Module parameter will be ignored, the module size will be calculated based on the BarcodeHeight
parameter value. If both BarcodeHeight and BarcodeWidth parameters aren't provided or they are all zero, the
barcode symbol height will be determined by the Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

See also the "BarcodeHeight" property.

HDPI: Integer, Specifies the horizontal resolution of printer in DPI (dots per inch).

It defaults to 0 if the HDPI is not provided, and the horizontal resolution will be obtained from your printer.

VDPI: Integer, Specifies the vertical resolution of printer in DPI (dots per inch).

It defaults to 0 if the VDPI is not provided, and the vertical resolution will be obtained from your printer.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidIndex_AfterBarcode (-4):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_AfterBarcode (-4) indicats that an invalid byte value is in the suffix codes of the
bytes sequence.

Verify_InvalidIndex_BeforeBarcode (-3):

If you use the OnEncode event handle to encode the barcode text to a bytes sequence in your own encoding
scheme, the Verify_InvalidIndex_BeforeBarcode (-3) indicats that an invalid byte value is in the prefix codes of the
bytes sequence (for example the BOM).

Verify_InvalidLength (-2):

It indicates that the length of Barcode parameter value is invalid.

2D Barcode FMX Components User Manual

302

Verify_OK (-1):

It indicates the method succeeds.

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid character is in the barcode text, the return value is the position index of the invalid
charactere. For 32-bit Windows, 64-bit Windows, and Mac OSX platform, the index 1 denotes that the first character
is invalid character. For iOS and Android platform, the index 0 denotes that the first character is invalid character.

B.1.12.3 PrintSize - Syntax 3

Returns the actual horizontal width and vertical height of a rotated barcode symbol in millimeters. The barcode symbol is
specified by the parameters of this method.

Syntax:

function PrintSize(var Width, Height, SymbolWidth, SymbolHeight: Single; Data:
TBytes; ShowQuietZone: Boolean; Module: Single; Angle: Single = 0; BarcodeWidth:
Single = 0; BarcodeHeight: Single = 0; HDPI: Integer = 0; VDPI: Integer = 0):
Integer; overload; virtual;

Description:

The method returns the actual horizontal width and vertical height of a rotated barcode symbol that is specified by
parameters of this method, in millimeters.

Please use the method between the Printer.BeginDoc and Printer.EndDoc methods if the HDPI or VDPI parameter is set
to 0.

Parameters:

Width: Single; Returns the horizontal width of the rotated barcode symbol in millimeters. The value is calculated
based on the module size. You can use one of the Module, BarcodeWidth and BarcodeHeight parameters to
specify the module size.

If the quiet zones are printed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are

2D Barcode FMX Components User Manual

303

included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

Height: Single; Returns the vertical height of the rotated barcode symbol in millimeters. The value is calculated
based on the module size. You can use one of the Module, BarcodeWidth and BarcodeHeight parameters to
specify the module size.

If the quiet zones are printed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

2D Barcode FMX Components User Manual

304

SymbolWidth: Single; Returns the distance between the leading and trailing of the rotated barcode symbol in
millimeter. The value is calculated based on the module size. You can use one of the Module, BarcodeWidth and
BarcodeHeight parameters to specify the module size.

If the quiet zones are printed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter is set to false. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

See also the "BarcodeWidth" property.

SymbolHeight: Single; Returns the distance between the top and bottom of the rotated barcode symbol in
millimeter. The value is calculated based on the module size. You can use one of the Module, BarcodeWidth and
BarcodeHeight parameters to specify the module size.

If the quiet zones are printed (please read the ShowQuietZone parameter section below about whether or not the
quiet zones will be printed), they are included in the barcode symbol. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

2D Barcode FMX Components User Manual

305

See also the "BarcodeHeight" property.

Data: TBytes; Specifies the barcode text. It is of type TBytes (it is in fact a byte array).

You can specify a block of binary (bytes) data to the parameter, in order to encode it into a barcode symbol.

For the TBarcodeFmx2D_RSS14 and TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit
is set to true, the check digit doesn't need to be included in the parameter, otherwise the check digit can be
specified by you in the parameter.

See also the "Barcode" and "Data" properties.

Barcode: String; Specifies the barcode text. It is of type string, and is in fact an UnicodeString. By default, the
unicode string will be converted to an UTF-8 bytes sequence (the BOM isn't included), then be encoded into the
barcode symbol. If you want to use other encoding scheme (for example the ANSI, UTF-16), please convert it in the
OnEncode event handle, or use the PrintSize (Syntax 3) overloading method and specify the converted bytes
sequence in its Data parameter. If you want to encode a block of binary (bytes) data, please use the PrintSize
(Syntax 3) overloading method.

For the TBarcodeFmx2D_RSS14 and TBarcodeFmx2D_RSSLimited components, if the property AutoCheckDigit
is set to true, the check digit doesn't need to be included in the parameter, otherwise the check digit can be
specified by you in the parameter.

See also the "Barcode" and "Data" properties.

ShowQuietZone: Boolean; Specifies whether to include the leading quiet zone, trailing quiet zone, top quiet zone,
and bottom quiet zone in the barcode symbol. If the parameter value is set to true, these quiet zones are included.
Otherwise, they don't be included. You can use the LeadingQuietZone, TrailingQuietZone, TopQuietZone, and
BottomQuietZone properties to specify the size of these quiet zones in modules. See diagram (the quiet zones are
printed in claSilver color in order to accentuate them):

2D Barcode FMX Components User Manual

306

For the TBarcodeFmx2D_Code16K barcode component, leading quiet zone and trailing quiet zone will be included
always, even if the ShowQuietZone parameter value is set to false. See diagram (the quiet zones are printed in
claSilver color in order to accentuate them):

See also the "ShowQuietZone" property.

Module: Single; Specifies the module size in millimeters.

For the Matrix 2D barcode symbology (excluding the TBarcodeFmx2D_MaxiCode barcode symbology), the
module is single cell (a suqare shape) used to encode one bit data. The parameter specifies the module
width and height. See diagram:

For the TBarcodeFmx2D_MaxiCode barcode symbology, the module is single cell (a regular hexagonal
shape) used to encode one bit data. The parameter specifies the horizonal width of a module. Also, it's the
center to center horizontal distance between adjacent modules. See diagram:

For the Stacked 2D barcode symbology and Linear 1D barcode symbology, the module is the thinest bar (or
space) in the barcode symbol. The parameter specifies the module width. See diagram:

If any one of the BarcodeWidth and BarcodeHeight parameters is provided and it isn't zero, the value of Module

2D Barcode FMX Components User Manual

307

parameter will be ignored, the module size will be calculated based on the BarcodeWidth parameter value or the
BarcodeHeight parmeter value. If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero,
only the BarcodeWidth parameter value will be used to calculate the module size, the BarcodeHeight parameter
value will be ignored.

See also the "Module" property.

Angle: Single; Specifies an angle in degrees to rotate the barcode symbol and its quiet zones (if they are printed,
please read the ShowQuietZone parameter section above about whether or not the quiet zones will be printed)
anticlockwise. It defaults to 0 if the parameter is not provided, meaning left to right horizontal direction. See diagram
(the quiet zones are printed in claSilver color in order to accentuate them):

BarcodeWidth: Single, Specifies the barcode symbol width (the distance between the beginning and end of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone parameter section
above about whether or not the quiet zones will be printed), the leading quiet zone and the trailing quiet zone are
included in the barcode symbol. See diagram (the quiet zones are printed in claSilver color in order to accentuate
them):

For the TBarcodeFmx2D_Code16K barcode component, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone parameter section above is set to false. See diagram (the quiet zones
are printed in claSilver color in order to accentuate them):

Note, if the parameter is provided and it isn't zero, the values of Module and BarcodeHeight parameters will be
ignored, the module size will be calculated based on the BarcodeWidth parameter value. If both BarcodeHeight and
BarcodeWidth parameters aren't provided or they are all zero, the barcode symbol width will be determined by the
Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

2D Barcode FMX Components User Manual

308

See also the "BarcodeWidth" property.

BarcodeHeight: Single, Specifies the barcode symbol height (the distance between the top and bottom of the
barcode symbol), in millimeters. If the quiet zones are printed (please read the ShowQuietZone parameter section
above about whether or not the quiet zones will be printed), the top quiet zone and the bottom quiet zone are
included in the barcode symbol. See diagram (the SpaceColor property is set to claSilver in order to accentuate the
quiet zones):

Note, if the parameter is provided and it isn't zero, and the BarcodeWidth parameter isn't provided or it's zero, the
value of Module parameter will be ignored, the module size will be calculated based on the BarcodeHeight
parameter value. If both BarcodeHeight and BarcodeWidth parameters aren't provided or they are all zero, the
barcode symbol height will be determined by the Module parameter value.

If both BarcodeWidth and BarcodeHeight parameters are provided and aren't zero, only the BarcodeWidth
parameter value will be used to calculate the module size, the BarcodeHeight parameter value will be ignored.

See also the "BarcodeHeight" property.

HDPI: Integer, Specifies the horizontal resolution of printer in DPI (dots per inch).

It defaults to 0 if the HDPI is not provided, and the horizontal resolution will be obtained from your printer.

VDPI: Integer, Specifies the vertical resolution of printer in DPI (dots per inch).

It defaults to 0 if the VDPI is not provided, and the vertical resolution will be obtained from your printer.

Return:

This method can return one of these values (these consts are defined in the pfmxCore2D unit):

Verify_InvalidLength (-2):

It indicates that the length of Data parameter value is invalid.

Verify_OK (-1):

It indicates the method succeeds.

2D Barcode FMX Components User Manual

309

Verify_InvalidIndex_Base (0), and greater than 0:

It indicates that an invalid byte value is in the Data parameter, the return value is the position index of the invalid byte
value. The index 0 denotes that the first byte value is invalid.

B.1.13 Size

Returns the height and width of specified barcode symbol, in pixels, that's displayed in the TImage control specified by the
Image property.

Syntax:

function Size(var Width, Height, SymbolWidth, SymbolHeight: Single): Boolean;
virtual;

Description:

The method returns the width and height of the barcode symbol that's displayed in the TImage control specified by the
Image property, in pixels. If the quiet zones are displayed (please read the ShowQuietZone property about whether or not
the quiet zones will be displayed), they are included in the barcode symbol.

Parameters:

Width: Single; Returns the horizontal width of the rotated barcode symbol that's displyed in the TImage control
specified in the Image property, in pixels. See diagram (the SpaceColor property value is set to claSilver in order to
accentuate the quiet zones):

If the quiet zones are displayed (please read the ShowQuietZone property about whether or not the quiet zones will
be displayed), they are included. See diagram (the SpaceColor property value is set to claSilver in order to
accentuate the quiet zones):

For the TBarcodeFmx2D_Code16K barcode components, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the SpaceColor property value is

2D Barcode FMX Components User Manual

310

set to claSilver in order to accentuate the quiet zones):

The value of Width parameter is calculated using following method:

The Stretch property is set to false, it's calculated based on the Module property value.

The Stretch property is set to true:

When the Orientation property is set to "boLeftRight" or "boRightLeft":

If the BarcodeWidth property value is greater than zero, it's same to the BarcodeWidth property value.

If the BarcodeWidth property value is equal to zero, the LeftMargin property value will be subtracted
from the width of TImage control that's specified by the Image property, then the result will be returned.

If the BarcodeWidth property value is less than zero, the LeftMargin property value, and the absolute
value of the negative BarcodeWidth property value (i.e. the right margin) will be subtracted from the
width of TImage control that's specified by the Image property, then the result will be returned.

When the Orientation property is set to "boTopBottom" or "boBottomTop":

If the BarcodeHeight property value is greater than zero, it's same to the BarcodeHieght property value.

If the BarcodeHeight property value is equal to zero, the LeftMargin property value will be subtracted
from the width of TImage control that's specified by the Image property, then the result will be returned.

If the BarcodeHeight property value is less than zero, the LeftMargin property value, and the absolute
value of the negative BarcodeHeight property value (i.e. the right margin) will be subtracted from the
width of TImage control that's specified by the Image property, then the result will be returned.

Height: Single; Returns the vertical height of the rotated barcode symbol that's displyed in the TImage control
specified in the Image property, in pixels. See diagram (the SpaceColor property value is set to claSilver in order to
accentuate the quiet zones):

If the quiet zones are displayed (please read the ShowQuietZone property about whether or not the quiet zones will
be displayed), they are included. See diagram (the SpaceColor property value is set to claSilver in order to
accentuate the quiet zones):

2D Barcode FMX Components User Manual

311

For the TBarcodeFmx2D_Code16K barcode components, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the SpaceColor property value is
set to claSilver in order to accentuate the quiet zones):

The value of Height is calculated using following method:

The Stretch property is set to false, it's calculated based on the Module property value.

The Stretch property is set to true:

When the Orientation property is set to "boLeftRight" or "boRightLeft":

If the BarcodeHeight property value is greater than zero, it's same to the BarcodeHeight property value.

If the BarcodeHeight property value is equal to zero, the TopMargin property value will be subtracted
from the height of TImage control that's specified by the Image property, then the result will be returned.

If the BarcodeHeight property value is less than zero, the TopMargin property value, and the absolute
value of the negative BarcodeHeight property value (i.e. the bottom margin) will be subtracted from the
height of TImage control that's specified by the Image property, then the result will be returned.

When the Orientation property is set to "boTopBottom" or "boBottomTop":

If the BarcodeWidth property value is greater than zero, it's same to the BarcodeWidth property value.

If the BarcodeWidth property value is equal to zero, the TopMargin property value will be subtracted
from the height of TImage control that's specified by the Image property, then the result will be returned.

If the BarcodeWidth property value is less than zero, the TopMargin property value, and the absolute
value of the negative BarcodeWidth property value (i.e. the bottom margin) will be subtracted from the
height of TImage control that's specified by the Image property, then the result will be returned.

SymbolWidth: Single; Returns the distance between the leading and trailing of the rotated barcode symbol that's
displyed in the TImage control specified in the Image property, in pixels. See diagram (the SpaceColor property
value is set to claSilver in order to accentuate the quiet zones):

2D Barcode FMX Components User Manual

312

If the quiet zones are displayed (please read the ShowQuietZone property about whether or not the quiet zones will
be displayed), the leading quiet zone and the trailing quiet zone are included. See diagram (the SpaceColor
property value is set to claSilver in order to accentuate the quiet zones):

For the TBarcodeFmx2D_Code16K barcode components, the leading quiet zone and the trailing quiet zone are
included always, even if the ShowQuietZone property is set to false. See diagram (the SpaceColor property value is
set to claSilver in order to accentuate the quiet zones):

The value of SymbolWidth is calculated using following method:

The Stretch property is set to false, it's calculated based on the Module property value.

The Stretch property is set to true:

If the BarcodeWidth property value is greater than zero, it's same to the BarcodeWidth property value.

If the BarcodeWidth property value is equal to zero:

When the Orientation property is set to "boLeftRight" or "boRightLeft", the LeftMargin property value will
be subtracted from the width of TImage control that's specified by the Image property, then the result will
be returned.

When the Orientation property is set to "boTopBottom" or "boBottomTop", the TopMargin property
value will be subtracted from the height of TImage control that's specified by the Image property, then
the result will be returned.

If the BarcodeWidth property value is less than zero:

When the Orientation property is set to "boLeftRight" or "boRightLeft", the LeftMargin property value,
and the absolute value of the negative BarcodeWidth property value (i.e. the right margin) will be
subtracted from the width of TImage control that's specified by the Image property, then the result will be
returned.

2D Barcode FMX Components User Manual

313

When the Orientation property is set to "boTopBottom" or "boBottomTop", the TopMargin property
value, and the absolute value of the negative BarcodeWidth property value (i.e. the bottom margin) will
be subtracted from the height of TImage control that's specified by the Image property, then the result
will be returned.

See also the "BarcodeWidth" property.

SymbolHeight: Single; Returns the distance between the top and bottom of the rotated barcode symbol that's
displyed in the TImage control specified in the Image property, in pixels. See diagram (the SpaceColor property
value is set to claSilver in order to accentuate the quiet zones):

If the quiet zones are displyed (please read the ShowQuietZone property about whether or not the quiet zones will
be displyed), the top quiet zone and the bottom quiet zone are included. See diagram (the SpaceColor property
value is set to claSilver in order to accentuate the quiet zones):

The value of SymbolHeight is calculated using following method:

The Stretch property is set to false, it's calculated based on the Module property value.

The Stretch property is set to true:

If the BarcodeHeight property value is greater than zero, it's same to the BarcodeHeight property value.

If the BarcodeHeight property value is equal to zero:

When the Orientation property is set to "boLeftRight" or "boRightLeft", the TopMargin property value will
be subtracted from the height of TImage control that's specified by the Image property, then the result
will be returned.

When the Orientation property is set to "boTopBottom" or "boBottomTop", the LeftMargin property
value will be subtracted from the width of TImage control that's specified by the Image property, then the
result will be returned.

If the BarcodeHeight property value is less than zero:

When the Orientation property is set to "boLeftRight" or "boRightLeft", the TopMargin property value,
and the absolute value of the negative BarcodeHeight property value (i.e. the bottom margin) will be
subtracted from the height of TImage control that's specified by Image property, then the result will be

2D Barcode FMX Components User Manual

314

returned.

When the Orientation property is set to "boTopBottom" or "boBottomTop", the LeftMargin property
value, and the absolute value of the negative BarcodeHeight property value (i.e. the right margin) will be
subtracted from the width of TImage control that's specified by the Image property, then the result will be
returned.

See also the "BarcodeHeight" property.

Return:

If the method succeeds, the return value is true.

If you use the Barcode property to specify the barcode text, when the length of Barcode property value is invalid, or
there is any invalid character in the Barcode property value, the return value is false. Corresponding to the
OnInvalidLength event or the OnInvalidChar event will occur.

If you use the Data property to specify the barcode text, when the length of Data property value is invalid, or there is
any invalid byte value in the Data property value, the return value is false. Corresponding to the OnInvalidDataLength
event or the OnInvalidDataChar event will occur.

B.2 TSaveFmx2D

B.2.1 Assign

Copies a TSaveFmx2D image saving component from another TSaveFmx2D image saving component.

Syntax:

procedure Assign(Source: TPresistent); override;

Description:

If the Source parameter is an object created from a subclass of TSaveFmx2D component class, and the class is same to
current image saving component class, Assign copies all property values and event handles from the source image saving
component to current one. If Source is any other type of object, an ESaveFmx2DError exception occurs.

Parameters:

Source: TPersistent; Specifies the source object.

B.2.2 Create

Creates and initializes a image saving component.

Syntax:

2D Barcode FMX Components User Manual

315

constructor Create(Owner: TComponent); override;

Description:

Call Create to instantiate a image saving object at runtime. Image saving components added at design time are created
automatically.

Parameters:

Owner: TComponent; It is the component that is responsible for freeing the image saving component instance.
Typically, this is the form. It becomes the value of the Owner property.

B.2.3 Destroy

Disposes of the instance of the image saving object.

Syntax:

destructor Destroy; override;

Description:

Destroy is the destructor for an image saving object.

Do not call the destructor directly in an application, instead, call Free. The Free verifies that the image saving object is not
nil before it calls Destroy.

B.2.4 Save

Save current barcode symbol in the barcode component to an image file. The barcode component is specified by the
Barcode2D property.

Syntax:

function Save(FilePath: string): Integer; virtual;

Description:

The method saves the barcode symbol to an image file. The barcode symbol is defined in the barcode component that's
specified by the Barcode2D property. Also, the TImage component isn't required in the Image property of the barcode
component.

An OnSave event will occur before save the barcode symbol to picture file. And an OnSaved event will occur after the
barcode symbol is saved.

Parameters:

FilePath: String; Specifies the file path and name for the image file.

2D Barcode FMX Components User Manual

316

Return:

This method can return one of these values (these consts are defined in the pfmxSave2D unit):

ERROR_OK (0): The method invocation succeeded.

ERROR_NO_BARCODE_COMPONENT (1): The method invocation failed because the Barcode2D property is
not link to a barcode component.

ERROR_INVALID_BARCODE (2): The method invocation failed, because the length of Barcode or Data property
value is invalid in the barcode component, corresponding to the OnInvalidLength or OnInvalidDatalength event of
barcode component will occur. Or because there is any invalid character in the Barcode or Data property value,
corresponding to the OnInvalidChar or OnInvalidDataChar event of barcode component will occur.

ERROR_WRITE_PICTURE (3): The method invocation failed because of a picture file write error. Perhaps the file
system fulls, or the access is denied.

ERROR_UNKNOWN (4): The method invocation failed because of othe error.

B.3 TCopyFmx2D

B.3.1 Assign

Copies a TCopyFmx2D component from another TCopyFmx2D component.

Syntax:

procedure Assign(Source: TPresistent); override;

Description:

If the Source parameter is an object created from a TCopyFmx2D component class, Assign copies all property values and
event handles from the source TCopyFmx2D component to current one. If Source is any other type of object, an
EColibboardBarcodeFmx2DError exception occurs.

Parameters:

Source: TPersistent; Specifies the source object.

B.3.2 Copy

Copy current barcode symbol in the barcode component to clipboard. The barcode component is specified by the
Barcode2D property.

Syntax:

2D Barcode FMX Components User Manual

317

function Copy: Integer; virtual;

Description:

The method copies the barcode symbol to clipboard. The barcode symbol is defined in the barcode component that's
specified by the Barcode2D property. Also, the TImage component isn't required in the Image property of the barcode
component.

Return:

This method can return one of these values (these consts are defined in the pfmxCopy2D unit):

ERROR_OK (0): The method invocation succeeded.

ERROR_NO_BARCODE_COMPONENT (1): The method invocation failed because the Barcode2D property is
not link to a barcode component.

ERROR_INVALID_BARCODE (2): The method invocation failed, because the length of Barcode or Data property
value is invalid in the barcode component, corresponding to the OnInvalidLength or OnInvalidDatalength event of
barcode component will occur. Or because there is any invalid character in the Barcode or Data property value,
corresponding to the OnInvalidChar or OnInvalidDataChar event of barcode component will occur.

ERROR_COPY_BARCODE (3): The method invocation failed because of a clipboard write error.

ERROR_UNKNOWN (4): The method invocation failed because of othe error.

ERROR_NOT_SUPPORTED (5): The method isn't supported by the barcode component that's specified in the
Barcode2D property.

B.3.3 Create

Creates and initializes a TCopyFmx2D component.

Syntax:

constructor Create(Owner: TComponent); override;

Description:

Call Create to instantiate a TCopyFmx2D object at runtime. TCopyFmx2D component added at design time are created
automatically.

Parameters:

Owner: TComponent; It is the component that is responsible for freeing the TCopyFmx2D component instance.
Typically, this is the form. It becomes the value of the Owner property.

B.3.4 Destroy

2D Barcode FMX Components User Manual

318

Disposes of the instance of the TCopyFmx2D object.

Syntax:

destructor Destroy; override;

Description:

Destroy is the destructor for a TCopyFmx2D object.

Do not call the destructor directly in an application, instead, call Free. The Free verifies that the TCopyFmx2D object is not
nil before it calls Destroy.

2D Barcode FMX Components User Manual

319

Annex C. Events

C.1 TBarcodeFmx2D

C.1.1 OnChange

Occurs when the value of Barcode or Data property is changed.

Syntax:

property OnChange: TNotifyEvent;

Parameters:

Sender: TObject; It is the object whose event handler is called.

C.1.2 OnDrawBarcode

Occurs after representing the barcode symbol. Write an OnDrawBarcode event handler to modify the barcode symbol
after it was represented.

Syntax:

type
{ Defined in the pfmxBarcode2D unit }
TUserWorkArea = record
WCanvas: TCanvas;
WBarcode: string;
WBarColor: TAlphaColor;
WSpaceColor: TAlphaColor;
WOpacity: Single;
WModule: Single;
WLeftInPixels: Single;
WTopInPixels: Single;
WAngle: Single;
WShowQuietZone: Boolean;
WMirror: Boolean;
WBarcodeData: TBytes;
WBarcodeLength: Integer;

2D Barcode FMX Components User Manual

320

WQuietZoneWidthInModules_Left: Integer;
WQuietZoneWidthInModules_Top: Integer;
WQuietZoneWidthInModules_Right: Integer;
WQuietZoneWidthInModules_Bottom: Integer;
WSymbolZoneWidthInModules: Integer;
WSymbolZoneHeightInModules: Integer;
WTotalWidthInPixels: Single;
WTotalHeightInPixels: Single;
WSymbolZoneOffsetInPixels_Left: Single;
WSymbolZoneOffsetInPixels_Top: Single;
WAlpha: Single;
WOrgin: TPointF;
WDensityRate: Single;

end;
{ Defined in the pfmxBarcode2D unit }
PUserWorkArea = ^TUserWorkArea;
{ Defined in the pfmxBarcode2D unit }
TOnDrawBarcode = procedure (Sender: TObject; Canvas: TCanvas; PWorkArea:
PUserWorkArea) of object;

property OnDrawBarcode: TOnDrawBarcode;

Parameters:

Sender: TObject; It is the object whose event handler is called.

Canvas: TCanvas; The target canvas, the barcode symbol will be represented in it.

PWorkArea: PUserWorkArea; It points to the TUserWorkArea record. The record contains fields defining the
barcode symbol. See also the "TUserWorkArea" record.

C.1.3 OnEncode

Occurs when the value of Barcode property is changed and the component is updating its barcode symbol, or one of the
following methods is called:

Clear

Draw

Size

DrawTo (Syntax 1)

DrawToSize (Syntax 1)

Print (Syntax 1)

PrintSize (Syntax 1)

DrawTo (Syntax 2)

DrawToSize (Syntax 2)

Print (Syntax 2)

2D Barcode FMX Components User Manual

321

PrintSize (Syntax 2)

GetParity (Syntax 1) (only for TBarcodeFmx2D_QRCode)

GetCheckSum (Syntax 1) (only for TBarcodeFmx2D_PDF417)

GetCheckSum (Syntax 1) (only for TBarcodeFmx2D_MicroPDF417)

By default, the barcode text in string will be encoded in the UTF-8 encoding scheme before generate the barcode symbol
(the BOM isn't included). The method is useful if you want to encode the barcode text in your own encoding scheme. See
also the "How to encode the UNICODE text in a 2D barcode symbol" article.

Syntax:

type
{ Defined in the pfmxCore2D unit }
TOnEncode = procedure (Sender: TObject; var Data: TBytes; Barcode: string) of
object;

property OnEncode: TOnEncode;

Parameters:

Sender: TObject; It is the object whose event handler is called.

Data: TBytes; The barcode text that's encoded by your own encoding scheme should be returned in this parameter.

The initial value is the UTF-8 bytes sequence converted from the Barcode parameter below.

Barcode: String; It is the barcode text in string type (it's an UnicodeString).

Its value is equal to the Barcode property if the Clear, Draw, Size, DrawTo (syntax 1), DrawToSize (syntax 1), Print
(syntax 1), or PrintSize (syntax 1) method is called or a component is updating its barcode symbol. And the value of
the parameter is equal to the Barcode parameter if the DrawTo (syntax 2), DrawToSize (syntax 2), Print (syntax 2),
PrintSize (syntax 2), GetParity (syntax 1) (only for TBarcodeFmx2D_QRCode), GetCheckSum (syntax 1) (only for
TBarcodeFmx2D_PDF417), or GetCheckSum (syntax 1) (only for TBarcodeFmx2D_MicroPDF417) method is
called.

Note:

The event doesn't occur when one of the following methods is called:

DrawTo (syntax 3)

DrawToSize (syntax 3)

Print (syntax 3)

PrintSize (syntax 3)

GetParity (syntax 2) (only for TBarcodeFmx2D_QRCode)

GetCheckSum (syntax 2) (only for TBarcodeFmx2D_PDF417)

GetCheckSum (syntax 2) (only for TBarcodeFmx2D_MicroPDF417)

C.1.4 OnInvalidChar

2D Barcode FMX Components User Manual

322

Occurs if there is any invalid character in the Barcode property value.

Syntax:

type
{ Defined in the pfmxBarcode2D unit }
TOnInvalidChar = procedure (Sender: TObject; Index: Integer; BarcodeChar: Char;
LinearFlag: Boolean) of object;

property OnInvalidChar: TOnInvalidChar;

Parameters:

Sender: TObject; It is the object whose event handler is called.

Index: Integer; The index position of first invalid character in the barcode text that is specified by the Barcode
property.

For 32-bit windows, 64-bit windows, and Mac OSX platform, the index 1 denotes that the first character is invalid
character. For iOS and Android platform, the index 0 denotes that the first character is invalid character.

If you use the OnEncode event to encode the barcode text in your own encoding scheme, the value
Verify_InvalidIndex_BeforeBarcode (-3) denotes that the prefix codes (for example the BOM) is invalid, the value
Verify_InvalidIndex_AfterBarcode (-4) denotes that the suffix codes is invalid. These consts are defined in the
pfmxCore2D unit.

BarcodeChar: Char; The first invalid character in the barcode text that is specified by the Barcode property. The
character is a WideChar.

LinearFlag: Bolean; The parameter is reserved for future use.

Note:

If the Locked property is set to false, the event occurs when any component property is changed to cause the
barcode is redrew, or when the Draw, Clear, Size, DrawTo (Syntax 1), DrawToSize (Syntax 1), Print (Syntax 1), or
PrintSize (Syntax 1) method is called. Even if the Image property isn't specified.

If the Locked property is set to true, the event occurs when the Locked property is set to false to cause the barcode
is redrew, or the Draw, Clear, Size, DrawTo (Syntax 1), DrawToSize (Syntax 1), Print (Syntax 1), or PrintSize
(Syntax 1) method is called. Even if the Image property isn't specified.

C.1.5 OnInvalidDataChar

The event occurs if there is any invalid byte value in the Data property value.

Syntax:

type
{ Defined in the pfmxBarcode2D unit }
TOnInvalidChar = procedure (Sender: TObject; Index: Integer; DataChar: Byte;
LinearFlag: Boolean) of object;

property OnInvalidChar: TOnInvalidChar;

2D Barcode FMX Components User Manual

323

Parameters:

Sender: TObject; It is the object whose event handler is called.

Index: Integer; The index position of first invalid byte in the barcode text that is specified by the Data property, the
index 0 denotes that the first byte is invalid byte.

DataChar: Byte; The first invalid byte value in the barcode data that is specified by the Data property.

LinearFlag: Bolean; The parameter is reserved for future use.

Note:

If the Locked property is set to false, the event occurs when any component property is changed to cause the
barcode is redrew, or when the Draw, Clear, Size, DrawTo (Syntax 1), DrawToSize (Syntax 1), Print (Syntax 1), or
PrintSize (Syntax 1) method is called. Even if the Image property isn't specified.

If the Locked property is set to true, the event occurs when the Locked property is set to false to cause the barcode
is redrew, or the Draw, Clear, Size, DrawTo (Syntax 1), DrawToSize (Syntax 1), Print (Syntax 1), or PrintSize
(Syntax 1) method is called. Even if the Image property isn't specified.

C.1.6 OnInvalidDataLength

The event occurs when the length of the Data property value is invalid.

Syntax:

type
{ Defined in the pfmxBarcode2D unit }
TOnInvalidDataLength = procedure (Sender: TObject; Data: TBytes; LinearFlag:
Boolean) of object;

property OnInvalidDataLength: TOnInvalidDataLength;

Parameters:

Sender: TObject; It is the object whose event handler is called.

Data: TBytes; The invalid value of the Data property.

LinearFlag: Bolean; The parameter is reserved for future use.

Note:

In general, it occurs when the length of barcode text exceeds the maximum length limit. For the
TBarcodeFmx2D_RSSLimited, TBarcodeFmx2D_RSS14, and TBarcodeFmx2D_AztecRunes components, if the
Data property value is an empty array, the event occurs too.

If the Locked property is set to false, the event occurs when any component property is changed to cause the
barcode is redrew, or when the Draw, Clear, Size, DrawTo (Syntax 1), DrawToSize (Syntax 1), Print (Syntax 1), or
PrintSize (Syntax 1) method is called. Even if the Image property isn't specified.

If the Locked property is set to true, the event occurs when the Locked property is set to false to cause the barcode

2D Barcode FMX Components User Manual

324

is redrew, or the Draw, Clear, Size, DrawTo (Syntax 1), DrawToSize (Syntax 1), Print (Syntax 1), or PrintSize
(Syntax 1) method is called. Even if the Image property isn't specified.

C.1.7 OnInvalidLength

Occurs when the length of the Barcode property value is invalid.

Syntax:

type
{ Defined in the pfmxBarcode2D unit }
TOnInvalidLength = procedure (Sender: TObject; Barcode: string; LinearFlag:
Boolean) of object;

property OnInvalidLength: TOnInvalidLength;

Parameters:

Sender: TObject; It is the object whose event handler is called.

Barcode: String; The invalid value of the Barcode property.

LinearFlag: Bolean; The parameter is reserved for future use.

Note:

In general, it occurs when the length of barcode text exceeds the maximum length limit. For the
TBarcodeFmx2D_RSSLimited, TBarcodeFmx2D_RSS14, and TBarcodeFmx2D_AztecRunes components, if the
Barcode property value is an empty string, the event occurs too.

If the Locked property is set to false, the event occurs when any component property is changed to cause the
barcode is redrew, or when the Draw, Clear, Size, DrawTo (Syntax 1), DrawToSize (Syntax 1), Print (Syntax 1), or
PrintSize (Syntax 1) method is called. Even if the Image property isn't specified.

If the Locked property is set to true, the event occurs when the Locked property is set to false to cause the barcode
is redrew, or the Draw, Clear, Size, DrawTo (Syntax 1), DrawToSize (Syntax 1), Print (Syntax 1), or PrintSize
(Syntax 1) method is called. Even if the Image property isn't specified.

C.1.8 ParseBarcodeIndex

If you use the OnEncode event handle to encode the barcode text in your own encoding scheme, the event occurs if there
is any invalid character in the value of Barcode property or Barcode parameter:

When the Clear, Draw, Size, DrawTo (syntax 1), DrawToSize (syntax 1), Print (syntax 1), or PrintSize (syntax 1)
method is called or a component is updating its barcode symbol, the event occurs if there is any invalid character in
the value of Barcode property.

When the DrawTo (syntax 2), DrawToSize (syntax 2), Print (syntax 2), PrintSize (syntax 2), GetParity (syntax 1) (only

2D Barcode FMX Components User Manual

325

for TBarcodeFmx2D_QRCode), GetCheckSum (syntax 1) (only for TBarcodeFmx2D_PDF417), or GetCheckSum
(syntax 1) (only for TBarcodeFmx2D_MicroPDF417) method is called, the event occurs if there is any invalid
character in the value of their Barcode parameter.

Syntax:

type
{ Defined in the pfmxCore2D unit }
TParseBarcodeIndex = function (Sender: TObject; Barcode: string; EncodedData:
TBytes; InvalidEncodedDataIndex: Integer): Integer of object;

property ParseBarcodeIndex: TParseBarcodeIndex;

Parameters:

Sender: TObject; It is the object whose event handler is called.

Barcode: String; It is the barcode text in string type (it's an UnicodeString).

Its value is equal to the Barcode property if the Clear, Draw, Size, DrawTo (syntax 1), DrawToSize (syntax 1), Print
(syntax 1), or PrintSize (syntax 1) method is called or a component is updating its barcode symbol. And the value of
the parameter is equal to the Barcode parameter if the DrawTo (syntax 2), DrawToSize (syntax 2), Print (syntax 2),
PrintSize (syntax 2), GetParity (syntax 1) (only for TBarcodeFmx2D_QRCode), GetCheckSum (syntax 1) (only for
TBarcodeFmx2D_PDF417), or GetCheckSum (syntax 1) (only for TBarcodeFmx2D_MicroPDF417) method is
called.

EncodedData: TBytes; The barcode text that's encoded by your own encoding scheme. It's equla the Data
parameter value of the OnEncode event handle.

InvalidEncodedDataIndex: Integer; The index position of first invalid byte in the value of EncodedData parameter
above. The index 0 denotes that the first byte value is invalid byte.

Return:

The index position of first invalid character in the value of Barcode parameter above should be returned. Please calculate
it according to the values of EncodedData and InvalidEncodedDataIndex parameters above, and the encoding algorithm
in your OnEncode event handle.

If the invalid byte value is in the prefix codes (for example the BOM), please return the value
Verify_InvalidIndex_BeforeBarcode (-3). If the invalid byte value is in the suffix codes, please return the value
Verify_InvalidIndex_AfterBarcode (-4). These consts are defined in the pfmxCore2D unit.

Note:

The event handle is not required if the value of Index parameter is correct in the OnInvalidChar event handle.

C.2 TSaveFmx2D

C.2.1 OnSave

Occurs before save the barcode symbol to an image file, when the Save method is called.

2D Barcode FMX Components User Manual

326

Syntax:

type
{ Defined in the pfmxSave2D unit }
TOnSave = procedure (Sender: TComponent; var FilePath: string; var Continue:
Boolean) of object;

property OnSave: TOnSave;

Parameters:

Sender: TObject; It is the object whose event handler is called.

FilePath: string; The file path and name of the image file that you want to save the barcode symbol to. You can
change the parameter value in the event handle.

Continue: Boolean; Specifies whether to save the barcode symbol to an image file. By default, its value is true.
Changing it to false will cancel the saving operation, in this case, the OnSaved event will not be occurred.

C.2.2 OnSaved

Occurs after save the barcode symbol to an image file, when the Save method is called.

Syntax:

type
{ Defined in the pfmxSave2D unit }
TOnSaved = procedure (Sender: TComponent; FilePath: string; ErrorCode: Integer)
of object;

property OnSaved: TOnSaved;

Parameters:

Sender: TObject; It is the object whose event handler is called.

FilePath: string; The file path and name of the image file that you want to save the barcode symbol to.

ErrorCode: Integer; Return the error status code of the saving operation. The Save method will return the error code
value too. It can be one of these value (these consts are defined in the pfmxSave2D unit):

ERROR_OK (0): The saving operation succeeded.

ERROR_NO_BARCODE_COMPONENT (1): The saving operation failed because the Barcode2D property
is not link to a barcode component.

ERROR_INVALID_BARCODE (2): The saving operation failed, because the length of Barcode or Data
property value is invalid in the barcode component, corresponding to the OnInvalidLength or
OnInvalidDatalength event of barcode component will occur. Or because there is any invalid character in the
Barcode or Data property value, corresponding to the OnInvalidChar or OnInvalidDataChar event of barcode
component will occur.

ERROR_WRITE_PICTURE (3): The saving operation failed because of a picture file write error. Perhaps

2D Barcode FMX Components User Manual

327

the file system fulls, or the access is denied.

ERROR_UNKNOWN (4): The saving operation failed because of othe error.

2D Barcode FMX Components User Manual

328

2D Barcode FMX Components User Manual
10.2.1.990 2024-12-02

Copyright © 2001-2024 Han-soft Corporation. All rights reserved.

http://www.han-soft.com

	Table of Contents
	Chapter 1. Introduction
	1.1 Overview
	1.2 Main features

	Chapter 2. Installation
	2.1 Trial user
	2.2 Registered user

	Chapter 3. Quick start
	3.1 How to use the barcode components
	3.2 How to use the barcode components with a database
	3.3 How to print a barcode symbol to paper
	3.4 How to save a barcode symbol to picture file
	3.5 How to copy a barcode symbol to the clipboard
	3.6 How to encode the UNICODE text in a 2D barcode symbol

	Chapter 4. Reference
	4.1 TBarcodeFmx2D
	4.1.1 TBarcodeFmx2D_AztecCode
	4.1.2 TBarcodeFmx2D_AztecRunes
	4.1.3 TBarcodeFmx2D_Code16K
	4.1.4 TBarcodeFmx2D_CompactMatrix
	4.1.5 TBarcodeFmx2D_DataMatrix
	4.1.6 TBarcodeFmx2D_DataMatrixECC200
	4.1.7 TBarcodeFmx2D_GridMatrix
	4.1.8 TBarcodeFmx2D_HanXinCode
	4.1.9 TBarcodeFmx2D_MaxiCode
	4.1.10 TBarcodeFmx2D_MicroPDF417
	4.1.11 TBarcodeFmx2D_MicroQRCode
	4.1.12 TBarcodeFmx2D_PDF417
	4.1.13 TBarcodeFmx2D_QRCode
	4.1.14 TBarcodeFmx2D_RSS14
	4.1.15 TBarcodeFmx2D_RSSExpanded
	4.1.16 TBarcodeFmx2D_RSSLimited

	4.2 TSaveFmx2D
	4.2.1 TSaveFmx2D_Bmp
	4.2.2 TSaveFmx2D_Emf
	4.2.3 TSaveFmx2D_Eps
	4.2.4 TSaveFmx2D_Gif
	4.2.5 TSaveFmx2D_Jpg
	4.2.6 TSaveFmx2D_Png
	4.2.7 TSaveFmx2D_Svg
	4.2.8 TSaveFmx2D_Wmf

	4.3 TCopyFmx2D
	4.4 TUserWorkArea

	Chapter 5. FAQs
	5.1 How to download the full version
	5.2 I forgot my license key

	Chapter 6. Information
	6.1 Support
	6.2 Purchase
	6.3 Contact us
	6.4 End-User License Agreement

	Annex A. Properties
	A.1 TBarcodeFmx2D
	A.1.1 AllowEscape
	A.1.2 AllowKanjiMode (TBarcodeFmx2D_MicroQRCode)
	A.1.3 AllowKanjiMode (TBarcodeFmx2D_QRCode)
	A.1.4 AutoCheckDigit (TBarcodeFmx2D_RSS14, TBarcodeFmx2D_RSSLimited)
	A.1.5 AutoMode (TBarcodeFmx2D_MaxiCode)
	A.1.6 Barcode
	A.1.7 BarcodeHeight
	A.1.8 BarcodeWidth
	A.1.9 BarColor
	A.1.10 BottomQuietZone
	A.1.11 BytesAlwaysBackToUpper (TBarcodeFmx2D_AztecCode)
	A.1.12 Compact (TBarcodeFmx2D_PDF417)
	A.1.13 CurrentColumns (TBarcodeFmx2D_PDF417)
	A.1.14 CurrentECCLevel (TBarcodeFmx2D_CompactMatrix)
	A.1.15 CurrentECCLevel (TBarcodeFmx2D_DataMatrix)
	A.1.16 CurrentECCLevel (TBarcodeFmx2D_GridMatrix)
	A.1.17 CurrentECCLevel (TBarcodeFmx2D_HanXinCode)
	A.1.18 CurrentECCLevel (TBarcodeFmx2D_MicroQRCode)
	A.1.19 CurrentECCLevel (TBarcodeFmx2D_PDF417)
	A.1.20 CurrentECCLevel (TBarcodeFmx2D_QRCode)
	A.1.21 CurrentEncodeMode (TBarcodeFmx2D_DataMatrix)
	A.1.22 CurrentMode (TBarcodeFmx2D_Code16K)
	A.1.23 CurrentMode (TBarcodeFmx2D_MaxiCode)
	A.1.24 CurrentRows (TBarcodeFmx2D_Code16K)
	A.1.25 CurrentRows (TBarcodeFmx2D_PDF417)
	A.1.26 CurrentSegments (TBarcodeFmx2D_CompactMatrix)
	A.1.27 CurrentSize (TBarcodeFmx2D_AztecCode)
	A.1.28 CurrentSize (TBarcodeFmx2D_DataMatrix)
	A.1.29 CurrentSize (TBarcodeFmx2D_DataMatrixECC200)
	A.1.30 CurrentSize (TBarcodeFmx2D_MicroPDF417)
	A.1.31 CurrentVersion (TBarcodeFmx2D_CompactMatrix)
	A.1.32 CurrentVersion (TBarcodeFmx2D_GridMatrix)
	A.1.33 CurrentVersion (TBarcodeFmx2D_HanXinCode)
	A.1.34 CurrentVersion (TBarcodeFmx2D_MicroQRCode)
	A.1.35 CurrentVersion (TBarcodeFmx2D_QRCode)
	A.1.36 Data
	A.1.37 DefaultEncodeMode (TBarcodeFmx2D_MicroPDF417)
	A.1.38 DefaultTextEncodeMode (TBarcodeFmx2D_MicroPDF417)
	A.1.39 ECCCount (TBarcodeFmx2D_AztecCode)
	A.1.40 ECCLevel (TBarcodeFmx2D_AztecCode)
	A.1.41 ECCLevel (TBarcodeFmx2D_CompactMatrix)
	A.1.42 ECCLevel (TBarcodeFmx2D_DataMatrix)
	A.1.43 ECCLevel (TBarcodeFmx2D_GridMatrix)
	A.1.44 ECCLevel (TBarcodeFmx2D_HanXinCode)
	A.1.45 ECCLevel (TBarcodeFmx2D_MicroQRCode)
	A.1.46 ECCLevel (TBarcodeFmx2D_PDF417)
	A.1.47 ECCLevel (TBarcodeFmx2D_QRCode)
	A.1.48 ECCLevelUpgrade (TBarcodeFmx2D_CompactMatrix)
	A.1.49 ECCLevelUpgrade (TBarcodeFmx2D_DataMatrix)
	A.1.50 ECCLevelUpgrade (TBarcodeFmx2D_GridMatrix)
	A.1.51 ECCLevelUpgrade (TBarcodeFmx2D_HanXinCode)
	A.1.52 ECCLevelUpgrade (TBarcodeFmx2D_MicroQRCode)
	A.1.53 ECCLevelUpgrade (TBarcodeFmx2D_PDF417)
	A.1.54 ECCLevelUpgrade (TBarcodeFmx2D_QRCode)
	A.1.55 EnableUpdateDB
	A.1.56 EncodeMode (TBarcodeFmx2D_DataMatrix)
	A.1.57 EncodePolicy (TBarcodeFmx2D_MicroQRCode)
	A.1.58 EncodePolicy (TBarcodeFmx2D_QRCode)
	A.1.59 FixedLength (TBarcodeFmx2D_AztecRunnes)
	A.1.60 Image
	A.1.61 InitialMode (TBarcodeFmx2D_Code16K)
	A.1.62 Inversed (TBarcodeFmx2D_AztecCode, TBarcodeFmx2D_DataMatrix, etc.)
	A.1.63 LeadingQuietZone
	A.1.64 LeftMargin
	A.1.65 Link2D
	A.1.66 Locked
	A.1.67 MaxColumns (TBarcodeFmx2D_PDF417)
	A.1.68 MaxRows (TBarcodeFmx2D_Code16K)
	A.1.69 MaxRows (TBarcodeFmx2D_PDF417)
	A.1.70 MaxSegments (TBarcodeFmx2D_CompactMatrix)
	A.1.71 MaxSize (TBarcodeFmx2D_AztecCode)
	A.1.72 MaxSize (TBarcodeFmx2D_DataMatrix)
	A.1.73 MaxSize (TBarcodeFmx2D_DataMatrixECC200)
	A.1.74 MaxSize (TBarcodeFmx2D_MicroPDF417)
	A.1.75 MaxSliceLen (TBarcodeFmx2D_MicroQRCode)
	A.1.76 MaxSliceLen (TBarcodeFmx2D_QRCode)
	A.1.77 MaxVersion (TBarcodeFmx2D_CompactMatrix)
	A.1.78 MaxVersion (TBarcodeFmx2D_GridMatrix)
	A.1.79 MaxVersion (TBarcodeFmx2D_HanXinCode)
	A.1.80 MaxVersion (TBarcodeFmx2D_MicroQRCode)
	A.1.81 MaxVersion (TBarcodeFmx2D_QRCode)
	A.1.82 MinColumns (TBarcodeFmx2D_PDF417)
	A.1.83 MinRows (TBarcodeFmx2D_Code16K)
	A.1.84 MinRows (TBarcodeFmx2D_PDF417)
	A.1.85 MinSegments (TBarcodeFmx2D_CompactMatrix)
	A.1.86 MinSize (TBarcodeFmx2D_AztecCode)
	A.1.87 MinSize (TBarcodeFmx2D_DataMatrix)
	A.1.88 MinSize (TBarcodeFmx2D_DataMatrixECC200)
	A.1.89 MinSize (TBarcodeFmx2D_MicroPDF417)
	A.1.90 MinVersion (TBarcodeFmx2D_CompactMatrix)
	A.1.91 MinVersion (TBarcodeFmx2D_GridMatrix)
	A.1.92 MinVersion (TBarcodeFmx2D_HanXinCode)
	A.1.93 MinVersion (TBarcodeFmx2D_MicroQRCode)
	A.1.94 MinVersion (TBarcodeFmx2D_QRCode)
	A.1.95 Mirrored (TBarcodeFmx2D_AztecCode, TBarcodeFmx2D_DataMatrix, etc.)
	A.1.96 Mode (TBarcodeFmx2D_MaxiCode)
	A.1.97 Module
	A.1.98 Opacity
	A.1.99 Options (TBarcodeFmx2D_MicroPDF417)
	A.1.100 Options (TBarcodeFmx2D_PDF417)
	A.1.101 Orientation
	A.1.102 Placement (TBarcodeFmx2D_CompactMatrix)
	A.1.103 ReviseVersion5 (TBarcodeFmx2D_HanXinCode)
	A.1.104 RowHeight (TBarcodeFmx2D_Code16K)
	A.1.105 RowHeight (TBarcodeFmx2D_MicroPDF417)
	A.1.106 RowHeight (TBarcodeFmx2D_PDF417)
	A.1.107 RowHeight (TBarcodeFmx2D_RSSExpanded)
	A.1.108 RowSymbols (TBarcodeFmx2D_RSSExpanded)
	A.1.109 SeparatorBarHeight (TBarcodeFmx2D_Code16K)
	A.1.110 SeparatorRowHeight (TBarcodeFmx2D_RSS14, TBarcodeFmx2D_RSSExpanded)
	A.1.111 SeparatorRowHeight (TBarcodeFmx2D_RSSLimited)
	A.1.112 Shape (TBarcodeFmx2D_DataMatrixEcc200)
	A.1.113 Show2DSeparator
	A.1.114 ShowQuietZone
	A.1.115 SpaceColor
	A.1.116 StartWidth (TBarcodeFmx2D_CompactMatrix)
	A.1.117 StopWidth (TBarcodeFmx2D_CompactMatrix)
	A.1.118 Stretch
	A.1.119 StretchOrder (TBarcodeFmx2D_CompactMatrix)
	A.1.120 StretchOrder (TBarcodeFmx2D_MicroPDF417)
	A.1.121 StretchOrder (TBarcodeFmx2D_PDF417)
	A.1.122 Style (TBarcodeFmx2D_RSS14)
	A.1.123 Style (TBarcodeFmx2D_RSSExpanded)
	A.1.124 SymbolMode (TBarcodeFmx2D_AztecCode)
	A.1.125 TopMargin
	A.1.126 TopQuietZone
	A.1.127 TotalHeight (TBarcodeFmx2D_RSS14, TBarcodeFmx2D_RSSLimited)
	A.1.128 TrailingQuietZone
	A.1.129 UseECIDescriptor (TBarcodeFmx2D_MicorPDF417)

	A.2 TSaveFmx2D
	A.2.1 Barcode2D (TSaveFmx2D)
	A.2.2 ColorDepth (TSaveFmx2D_Bmp)
	A.2.3 ColorDepth (TSaveFmx2D_Gif)
	A.2.4 ColorDepth (TSaveFmx2D_Png)
	A.2.5 CompressionLevel (TSaveFmx2D_Png)
	A.2.6 DeviceHeightInMM (TSaveFmx2D_Emf)
	A.2.7 DeviceHeightInPixel (TSaveFmx2D_Emf)
	A.2.8 DeviceHeightInUM (TSaveFmx2D_Emf)
	A.2.9 DeviceWidthInMM (TSaveFmx2D_Emf)
	A.2.10 DeviceWidthInPixel (TSaveFmx2D_Emf)
	A.2.11 DeviceWidthInUM (TSaveFmx2D_Emf)
	A.2.12 EmbedBarcodeText (TSaveFmx2D_Emf, TSaveFmx2D_Eps, TSaveFmx2D_Gif, etc.)
	A.2.13 EmbedBarcodeText (TSaveFmx2D_Png)
	A.2.14 Interlaced (TSaveFmx2D_Png, TSaveFmx2D_Gif)
	A.2.15 LogicUnitsPerInch (TSaveFmx2D_Wmf)
	A.2.16 Placeable (TSaveFmx2D_Wmf)
	A.4.17 Quality (TSaveFmx2D_Jpg)
	A.2.18 Version (TSaveFmx2D_Gif)
	A.2.19 XPPM (TSaveFmx2D_Bmp)
	A.2.20 YPPM (TSaveFmx2D_Bmp)

	A.3 TCopyFmx2D
	A.3.1 Barcode2D (TCopyFmx2D)

	Annex B. Methods
	B.1 TBarcodeFmx2D
	B.1.1 Assign
	B.1.2 Clear
	B.1.3 Create
	B.1.4 Destroy
	B.1.5 Draw
	B.1.6 DrawTo
	B.1.6.1 DrawTo - Syntax 1
	B.1.6.2 DrawTo - Syntax 2
	B.1.6.3 DrawTo - Syntax 3

	B.1.7 DrawToSize
	B.1.7.1 DrawToSize - Syntax 1
	B.1.7.2 DrawToSize - Syntax 2
	B.1.7.3 DrawToSize - Syntax 3

	B.1.8 GetCheckSum (TBarcodeFmx2D_MicroPDF417)
	B.1.8.1 GetCheckSum - Syntax 1 (TBarcodeFmx2D_MicroPDF417)
	B.1.8.2 GetCheckSum - Syntax 2 (TBarcodeFmx2D_MicroPDF417)

	B.1.9 GetCheckSum (TBarcodeFmx2D_PDF417)
	B.1.9.1 GetCheckSum - Syntax 1 (TBarcodeFmx2D_PDF417)
	B.1.9.2 GetCheckSum - Syntax 2 (TBarcodeFmx2D_PDF417)

	B.1.10 GetParity (TBarcodeFmx2D_QRCode)
	B.1.10.1 GetParity - Syntax 1 (TBarcodeFmx2D_QRCode)
	B.1.10.2 GetParity - Syntax 2 (TBarcodeFmx2D_QRCode)

	B.1.11 Print
	B.1.11.1 Print - Syntax 1
	B.1.11.2 Print - Syntax 2
	B.1.11.3 Print - Syntax 3

	B.1.12 PrintSize
	B.1.12.1 PrintSize - Syntax 1
	B.1.12.2 PrintSize - Syntax 2
	B.1.12.3 PrintSize - Syntax 3

	B.1.13 Size

	B.2 TSaveFmx2D
	B.2.1 Assign
	B.2.2 Create
	B.2.3 Destroy
	B.2.4 Save

	B.3 TCopyFmx2D
	B.3.1 Assign
	B.3.2 Copy
	B.3.3 Create
	B.3.4 Destroy

	Annex C. Events
	C.1 TBarcodeFmx2D
	C.1.1 OnChange
	C.1.2 OnDrawBarcode
	C.1.3 OnEncode
	C.1.4 OnInvalidChar
	C.1.5 OnInvalidDataChar
	C.1.6 OnInvalidDataLength
	C.1.7 OnInvalidLength
	C.1.8 ParseBarcodeIndex

	C.2 TSaveFmx2D
	C.2.1 OnSave
	C.2.2 OnSaved

