2D Barcode VCL Components

User Manual

Version: 13.2.0.2651

http://www.han-soft.com

2D Barcode VCL Components User Manual

Chapter 1. Introduction

1.1 Overview

2D Barcode VCL Components is the most flexible and powerful VCL components package which lets you to easily add advanced
2D barcode generation and printing features to your application.

2D Barcode VCL Components supports most popular Matrix and Stacked 2D Barcode Symbologies/Standards, including Aztec
Code, Aztec Runes, Code 16K, Data Matrix (ECC 000-140, ECC 200), MaxiCode, PDF417, QR Code 2005, Micro QR Cod
MicroPDF417.

All RSS barcode symbologies are supported, including RSS-14, RSS-14 Truncated, RSS-14 Stacked, RSS-14 Stacke«
Omnidirectional, RSS Limited, RSS Expanded, and RSS Expanded Stacked.

The EAN.UCC composite symbologies are supported.

All morden versions of Delphi and C++ Builder are supported, including the Delphi 4, 5, 6, 7, 2005, 2006, 2007, 2009, 2010, XE,
XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.2 Athens
and C++ Builder 4, 5, 6, 2006, 2007, 2009, 2010, XE, XE2, XE3, XE4, XE5, XE6, XE7, XES8, 10 Seattle, 10.1 Berlin, 10.2 Tokyc
10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.2 Athens.

For Delphi XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.:
Athens, and C++ Builder XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.
Alexandria, 12.2 Athens, both 32-bit and 64-bit components are included.

2D Barcode VCL Components are easy to use. Developers use them like any other VCL component.

1.2 Main features

e Allows to draw the barcode symbol to canvas (with scaling and rotating).

e Allows to print the barcode symbol to paper (with scaling and rotating).

e Ability to save barcode symbol in a variety of picture formats.

e Ability to encode the data block into a barcode symbol.

e Most popular matrix and stacked 2 dimensional barcode symbologies are supported.

e Al RSS barcode symbologies are supported.

e Ability to create the EAN.UCC composite barcode symbols.

e All of the Quick Report, Fast Report, Report Builder, Rave Reports and ACE Reporter are supported.

e The database function is supported, including the data access components (such as the FireDAC, dbExpress, BDE) and the
LiveBindings.

e The Delphi 4,5, 6, 7, 2005, 2006, 2007, 2009, 2010, XE, XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.

10

2D Barcode VCL Components User Manual

Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.2 Athens and C++ Builder 4, 5, 6, 2006, 2007, 2009, 2010, XE, XE2, XE3,
XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.2 Athens are
supported.

For Delphi XE2, XE3, XE4, XE5, XE6, XE7, XES8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.0
Alexandria, 12.2 Athens and C++ Builder XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio
10.4 Sydney, 11.3 Alexandria, 12.2 Athens, both 32-bit and 64-bit components are included.

Structured append, ECI, etc. features are supported.

Ability to add a logo picture to the barcode symbol.

Itis visible in design time.

Ability to scale and rotate the barcode symbols.

Foreground and background colors of barcode symbol can be changed freely.
It's easy to use, and it has the excellent functionality.

It's a very popular 2D barcode components package.

11

2D Barcode VCL Components User Manual

Chapter 2. Installation

2.1 Trial user

Installation step by step:

1.

7.
8.
9.

Note:

L]

L]

Before installing the components package, please close all Delphi and C++ Builder IDEs.

Note, for each IDE, if it's a clean installation, please run it at least once before installing the components package, then
closes it and continues installation.

. Run the installation file barcode2d_tri.exe, and then click on the "Next" button in the installation dialog box.

. Read the End-User License Agreement You must accept the terms of this agreement before continuing with the
installation. And then click on the "Next" button.

. Specify a target folder (it will be created if does not exist), the components package will be installed into it. And then click on
the "Next" button.

. All supported Delphi and C++ Builder IDEs will be listed automatically according on the existing IDEs in your computer.
Please select the IDEs you want to install to them. And then click on the "Next" button.

Note, The Delphi 4, 5, 6, 7, 2005, 2006, 2007, 2009, 2010, XE, XE2, XE3, XE4, XE5, XE6, XE7, XES8, 10 Seattle, 10.
Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.2 Athens, and C++ Builder 4, 5, 6, 2006, 2007, 2009, 2010,
XE, XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria
12.2 Athens are supported now. The Delphi 2006, 2007, 2009, 2010, XE, XE2, XE3, XE4, XE5, XE6, XE7, XES8, 1(
Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.2 Athens and C++ Builder 2006, 2007, 2009,
2010, XE, XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11..
Alexandria, 12.2 Athens are listed as RAD Studio (Delphi & C++ Builder) 2006, 2007, 2009, 2010, XE, XE2, XE3, XE4
XES5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.2 Athens.

. Specify a shortcuts folder in "Start Menu" for the components package. And then click on the "Next" button. Later, you can
open the manual or remove the components package in the shortcuts folder.

Click on the "Install" button to complete the components package installation.

Click on the "Finish" button to close the installation dialog box.

You can start your IDE to use the components package now.

If multi-user accounts want to use the components package, please install it into the same folder in each user session.

For Delphi XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.0
Alexandria, 12.2 Athens, and C++ Builder XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio
10.4 Sydney, 11.3 Alexandria, 12.2 Athens, both 32-bit and 64-bit components are included.

2.2 Registered user

12

2D Barcode VCL Components User Manual

Installation step by step:

1.

10.
11.
12.

Note:
L]

L]

L]

Before installing the components package, please close all Delphi and C++ Builder IDEs.

Note, for each IDE, if it's a clean installation, please run it at least once before installing the components package, then
closes it and continues installation.

. Please uninstall the trial release using the "Uninstall" shortcuts in the "Start Menu" if it is installed in your computer.

. Please download the installation package using the download link that's sent from us after you purchase the components
package. If your download link doesn't work, please visit the "Manage your licenses" page to request a new download link.
Please open the page then enter your order ID, license user name or license e-mail address to locate your order, then click
on the oder ID to display it, choose a license and click on the "Request a new download link", the new download link will
be sent to this license e-mail address automatically.

. Run the installation file barcode2d_ful.exe, and then click on the "Next" button in the installation dialog box.

. Read the End-User License Agreement You must accept the terms of this agreement before continuing with the
installation. And then click on the "Next" button.

. Type your email address and the license key that they are sent from us after you purchase the components package, they
are not case-sensitive. And then click on the "Next" button. If you forgot the license key, please visit the "Manage your
licenses" page to retrieve it. Please open the page then enter your order ID, license user name or license e-mail address to
locate your order, then click on the oder ID to display it, choose a license and click on the "Retrieve the license key", the

license key will be sent to the license e-mail address automatically.

. Specify a target folder (it will be created if does not exist), the components package will be installed into it. And then click on
the "Next" button.

. All supported Delphi and C++ Builder IDEs will be listed automatically according on the existing IDEs in your computer.
Please select the IDEs you want to install to them. And then click on the "Next" button.

Note, The Delphi 4, 5, 6, 7, 2005, 2006, 2007, 2009, 2010, XE, XE2, XE3, XE4, XE5, XE6, XE7, XES8, 10 Seattle, 10.
Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.2 Athens, and C++ Builder 4, 5, 6, 2006, 2007, 2009, 2010,
XE, XE2, XE3, XE4, XE5, XE6, XE7, XES8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria
12.2 Athens are supported now. The Delphi 2006, 2007, 2009, 2010, XE, XE2, XE3, XE4, XE5, XE6, XE7, XE8, 1(
Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.2 Athens, and C++ Builder 2006, 2007, 2009,
2010, XE, XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11..
Alexandria, 12.2 Athens are listed as RAD Studio (Delphi & C++ Builder) 2006, 2007, 2009, 2010, XE, XE2, XE3, XE4
XES5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.3 Alexandria, 12.2 Athens.

. Specify a shortcuts folder in "Start Menu" for the components package. And then click on the "Next" button. Later, you can
open the manual or remove the components package in the shortcuts folder.

Click on the "Install" button to complete the components package installation.

Click on the "Finish" button to close the installation dialog box.

You can start your IDE to use the components package now.

If multi-user accounts want to use the components package, please install it into the same folder in each user session.

After installation, please delete all ".dcu" files in your projects that they are built using the trial release of the components
package, then re-build these projects.

For Delphi XE2, XE3, XE4, XE5, XE6, XE7, XE8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio, 10.4 Sydney, 11.

Alexandria, 12.2 Athens, and C++ Builder XE3, XE4, XE5, XE6, XE7, XES8, 10 Seattle, 10.1 Berlin, 10.2 Tokyo, 10.3 Rio
10.4 Sydney, 11.3 Alexandria, 12.2 Athens, both 32-bit and 64-bit components are included.

13

http://www.han-soft.com/releases/barcode2d/license/licenses.php
http://www.han-soft.com/releases/barcode2d/license/licenses.php

2D Barcode VCL Components User Manual

Chapter 3. Quick start

3.1 How to use the barcode components

Usage:

1. Put a barcode component, such as the TBarcode2D_QRCode, TBarcode2D_PDF417, and TBarcode2D_RSS14 to your
form.

2. Puta Timage control to your form.
3. Set the Image property of the barcode component to the Timage control.

You can link single Timage control to multiple TBarcode2D components in order to display multiple barcode symbols in the
Timage control (using the LeftMargin and TopMargin properties to specify the position for every barcode symbol).

Note:

If the barcode symbol isn't displayed, please check whether the length of barcode text exceeds the maximum length limit, or whether
there is any invalid character in the barcode text.

You can create the OninvalidLength and OninvalidDatalLength (only for Delphi/C++ Builder 2009 or later) event handles to catch the
invalid barcode length exception. And create the OninvalidChar and OninvalidDataChar (only for Delphi/C++ Builder 2009 or later)
event handles to catch the invalid character in the barcode text.

Also, please check whether the Timage control is large enough to accommodate entire barcode symbol.

3.2 How to use the barcode components with a database

Use the classic data access components such as BDE, dbExpress, FireDAC, AnyDAC, etc.

1. Put aTBarcode2D barcode component, such as the TBarcode2D_QRCode, TBarcode2D_PDF417, and
TBarcode2D_RSS14 to your form.

2. Puta TDBBarcode2D component to your form.

3. Setthe Barcode2D property of the TDBBarcode2D component to your TBarcode2D barcode component.
4. Set the DataSource property of the TDBBarcode2D component to your TDataSource component.

5. Setthe DataField property of the TDBBarcode2D component to a field in your dataset.

6. If you use the Delphi/C++ Builder 2009 or later, Set theBindProperty property of the TDBBarcode2D component to indicate
which property of the TBarcode2D component the data field value will be applied to.

7. If you want to represent the barcode symbol in form or QuickReport report, put aTlimage control to your form, or put a
TQRImage or TQRGzImage control to your report. Set the Image property of the TBarcode2D barcode component to the

14

2D Barcode VCL Components User Manual

Timage, TQRImage, or TQRGzImage control. The data in the data field will be represented as a barcode symbol in your
Timage, TQRImage, or TQRGzImage control.

. If youwant to save the barcode symbol to a picture, put a TSave2D component, such as the TSave2D_Bmp, TSave2D_Png,

and TSave2D_Svg to your form. Set the Barcode2D property of the TSave2D component to your TBarcode2D barcode
component. Then you can use the Save method of the TSave2D component to save the barcode symbol to a picture file.

. Also, you can use the Print method of the TBarcode2D component to print the barcode symbol to paper, or use the DrawTo

method of the TBarcode2D component to draw the barcode symbol to any TCanvas.

Note, You can bind multiple TDBBarcode2D and TBarcode2D component pairs to a data field in order to represent the data field

with mul

tiple barcode symbols.

Use the LiveBindings (Delphi/C++ Builder XE2 or later).

1.

Put aTBarcode2D barcode component, such as the TBarcode2D_QRCode, TBarcode2D_PDF417, and
TBarcode2D_RSS14 to your form.

. Open the "LiveBindings Designer" (right-click on the form then execute the "Bind visually..." menu item), click on the barcode

component in the form to select it, change the "Visible Element" sub-item of the "LiveBindings Designer" item to true in the
"Object Inspector”.

. Right-click on the barcode component in the "LiveBindings Designer", execute the "Bindable Members..." menu item, check

the "Barcode" property or the "Data" property (only for the Delphi/C++ Builder 2009 or later) in the "Bindable Members"
dialog, click on the "OK" button to close it.

. Link the Barcode property or the Data property (only for the Delphi/C++ Builder 2009 or later) of the TBarcode2D barcode

component to your data field in the TBindSourceDB component, or a string property of other control.

. If you want to represent the barcode symbol in form or QuickReport report, put aTlmage control to your form, or put a

TQRImage or TQRGzImage control to your report. Set the Image property of the TBarcode2D barcode component to the
Timage, TQRImage, or TQRGzImage control. The data in the data field will be represented as a barcode symbol in your
Timage, TQRImage, or TQRGzImage control.

. If you want to save the barcode symbol to a picture, put a TSave2D component, such as the TSave2D_Bmp, TSave2D_Png,

and TSave2D_Svg to your form. Set the Barcode2D property of the TSave2D component to your barcode component. Then
you can use the Save method of the TSave2D component to save the barcode symbol to a picture file.

. Also, you can use the Print method of the TBarcode2D component to print the barcode symbol to paper, or use the DrawTo

method of the TBarcode2D component to draw the barcode symbol to any TCanvas.

Note, You can link multiple TBarcode2D components to a data field in order to represent the data field with multiple barcode
symbols.

3.3 How to use the barcode components with QuickReport

Usage:

1.

2.

Put a barcode component, such as the TBarcode2D_QRCode, TBarcode2D_PDF417, and TBarcode2D_RSS14 to your
form.

Also, put a TDBBarcode2D component to the form and link the TBarcode2D component to the TDBBarcode2D component
if the database support is required.

Put a TQRImage or TQRGzImage control to your report.

15

2D Barcode VCL Components User Manual

3. Set the Image property of the barcode component to the TQRImage or TQRGzImage control.

You can link single TQRImage or TQRGzImage control to multiple TBarcode2D components in order to display multiple
barcode symbols in the TQRImage or TQRGzImage control (using the LeftMargin and TopMargin properties to specify the
position for every barcode symbol).

Note:

If the barcode symbol cannot be read, please don't reduce/stretch the barcode symbol (set the Stretch property to false). You can
change the barcode symbol size by changing its Module property value.

Also, please check whether the TQRImage or TQRGzImage control is large enough to accommodate entire barcode symbol.

3.4 How to use the barcode components with FastReport

Usage:
1. Edit your report, put a TfrxPictureView control to your report in order to present the barcode symbol.

2. Put a barcode component, such as the TBarcode2D_QRCode, TBarcode2D_PDF417, and TBarcode2D_RSS14 to your
form that the TfrxReport component is in it.

Also, put a TDBBarcode2D component to the form and link the TBarcode2D component to the TDBBarcode2D component
if the database support is required.

3. Create the OnBeforePrint event function for the TfrxReport component.

In the event function, change the properties of the TBarcode2D component such as Barcode, Module, and Orientation, and
adjust the bitmap size of the TfrxPictureView control in order to accommodate entire barcode symbol, then use the DrawTo
method of the TBarcode2D component to draw the barcode symbol to the TfrxPictureView control.

For example:

var
AWidth, AHeight, ASymbolWidth, ASymbolHeight: Integer;
begin
Barcode2D QRCodel.Barcode := '1235678"';
Barcode2D_ QRCodel.Module := 1;

Barcode2D QRCodel.DrawToSize (AWidth, AHeight, ASymbolWidth, ASymbolHeight);

with TfrxPictureView (frxReportl.FindObject ('Picturel')) .Picture.Bitmap do
begin
Width := AWidth;
Height := AHeight;
Barcode2D_ QRCodel.DrawTo (Canvas, 0, 0);
end;
end;

Note, if you use old FastReport 2.x, please use the OnBeginBand event.

16

2D Barcode VCL Components User Manual

3.5 How to use the barcode components with ReportBuilder

Usage:
1. Edit your report, put a Tpplmage control to your report in order to present the barcode symbol.

2. Put a barcode component, such as the TBarcode2D_QRCode, TBarcode2D_PDF417, and TBarcode2D_RSS14 to your
form that the TppReport component is init.

Also, put a TDBBarcode2D component to the form and link the TBarcode2D component to the TDBBarcode2D component
if the database support is required.

3. Create the OnBeforePrint event function for the TppReport component.

In the event function, change the properties of the TBarcode2D component such as Barcode, Module, and Orientation, and
adjust the bitmap size of the Tppimage control in order to accommodate entire barcode symbol, then use the DrawTo
method of the TBarcode2D component to draw the barcode symbol to the Tppimage control.

For example:

var
AWidth, AHeight, ASymbolWidth, ASymbolHeight: Integer;
begin
Barcode2D QRCodel.Barcode := '1235678"';
Barcode2D_ QRCodel.Module := 1;
Barcode2D QRCodel.DrawToSize (AWidth, AHeight, ASymbolWidth, ASymbolHeight);
ppReportlImagel.Picture.Bitmap.Width := AWidth;
ppReportlImagel.Picture.Bitmap.Height := AHeight;
Barcode2D QRCodel.DrawTo (ppReportlImagel.Picture.Bitmap.Canvas, 0, 0);

end;

3.6 How to use the barcode components with ACE Reporter

Usage:
1. Edit your report, put a TsctimageLabel control to your report in order to present the barcode symbol.

2. Put a barcode component, such as the TBarcode2D_QRCode, TBarcode2D_PDF417, and TBarcode2D_RSS14 to your
form that the TsctReport componentis iniit.

Also, put a TDBBarcode2D component to the form and link the TBarcode2D component to the TDBBarcode2D component
if the database support is required.

3. Create the OnBeforePrint event function for the TsctimageLabel control.

In the event function, change the properties of the TBarcode2D component such as Barcode, Module, and Orientation, and
adjust the bitmap size of the TsctimageLabel control in order to accommodate entire barcode symbol, then use the DrawTo
method of the TBarcode2D component to draw the barcode symbol to the TsctimagelLabel control.

For example:

var

AWidth, AHeight, ASymbolWidth, ASymbolHeight: Integer;

17

2D Barcode VCL Components User Manual

begin
Barcode2D_ QRCodel.Barcode := '1235678"';
Barcode2D QRCodel.Module := 1;
Barcode2D QRCodel.DrawToSize (AWidth, AHeight, ASymbolWidth, ASymbolHeight);
with SctImagelabell.Picture.Bitmap do

begin
Width := AWidth;
Height := AHeight;
Barcode2D QRCodel.DrawTo (Canvas, 0, 0);
end;
end;

3.7 How to use the barcode components with Rave Reports

Usage:

1. Use the Rave Reports Visual Designer to edit your report, put a bitmap component to your report in order to present the
barcode symbol.

2. Put aTBarcode2D barcode component, such as the TBarcode2D_QRCode, TBarcode2D PDF417, and
TBarcode2D_RSS14 to your form that the TRvProject component is init.

Also, put a TDBBarcode2D component to the form and link the TBarcode2D component to the TDBBarcode2D component
if the database support is required.

3. Insert code to call the Open method of the TRvProject component before print or preview the report, and call the Close
method after print or preview the report.

For example:

RvProjectl.Open;
RvProjectl.Execute;

RvProjectl.Close;
4. Add RvCsStd, RvProj, and RvClass units to the uses list.

5. Create the OnAfterOpen event function for the TRvProject component.

In the event function, change the properties of the TBarcode2D component such as Barcode, Module, and Orientation. Then
create a temporary TBitmap object, adjust its size in order to accommodate entire barcode symbol, and use the DrawTo
method of the TBarcode2D component to draw the barcode symbol to the temporary TBitmap object. At last, adjust the size
of the bitmap component in your report, and assign the temporary bitmap to it.

For example:

var
RvReport: TRaveReport;
RvPage : TRavePage;
RvBitmap: TRaveBitmap;
TmpBitmap: TBitmap;
AWidth, AHeight, ASymbolWidth, ASymbolHeight: Integer;
Scale: Integer;

begin

18

2D Barcode VCL Components User Manual

Barcode2D QRCodel.Barcode := '1234567890';
Barcode2D_ QRCodel.Module := 2;

with RvProjectl.ProjMan do

begin
RvReport := FindRaveComponent ('Reportl', nil) as TRaveReport;
RvPage := FindRaveComponent ('Pagel', RvReport) as TRavePage;
RvBitmap := FindRaveComponent ('Bitmapl', RvPage) as TRaveBitmap;
end;
TmpBitmap := TBitmap.Create;
try
Barcode2D QRCodel.DrawToSize (AWidth, AHeight, ASymbolWidth, ASymbolHeight);
TmpBitmap.Width := AWidth;
TmpBitmap.Height := AHeight;
Scale := 72;
RvBitmap.Width := RvReport.XI2U (AWidth / Scale);
RvBitmap.Height := RvReport.YI2U (AHeight / Scale);
RvBitmap.MatchSide := msBoth;

Barcode2D QRCodel.DrawTo (TmpBitmap.Canvas, 0, 0);
RvBitmap.Image.Assign (TmpBitmap) ;

finally
TmpBitmap.Free;

end;

3.8 How to generate the EAN.UCC composite barcode symbol

Usage:
1. Puta 2D barcode component TBarcode2D_CCA, TBarcode2D_CCB, or TBarcode2D_CCC to your form.

Also, put a TDBBarcode2D component to the form and link the 2D barcode component to the TDBBarcode2D component if
the database support is required.

2. Put a linear barcode component to your form. TheTBarcode2D_RSS14, TBarcode2D_RSSLimited, and
TBarcode2D RSSExpanded can be used as the linear component. The TBarcode1D_ UPCA, TBarcode1D_UPCE,
TBarcode1D_UPCEO, TBarcode1D_UPCE1, TBarcode1D_EANS8, TBarcode1D_EAN13, and TBarcode1D_EAN128
components can be used as linear barcode component too, they are in the 1D Barcode VCL Componntspackage. Note,
only the TBarcode1D_EAN128 component can be used as the linear barcode component if you use the TBarcode2D_CCC
as the 2D barcode component.

Also, put aTDBBarcode2D component (the linear barcode component is the TBarcode2D_RSS14,
TBarcode2D_RSSLimited, or TBarcode2D_RSSExpanded) or a TDBBarcode1D component (if the linear barcode
component is the TBarcode1D_UPCA, TBarcode1D_UPCE, TBarcode1D_UPCEO, TBarcode1D_UPCE1,
TBarcode1D_EANS, TBarcode1D_EAN13, or TBarcode1D_EAN128) to the form and link the linear barcode component to
it if the database support is required. The TDBBarcode1D component is in the 1D Barcode VCL Componnts package.

3. Setthe Linear property of the 2D barcode component to the linear barcode component.

4. Puta Timage control to your form, or put a TQRImage or TQRGzImage control to your report.

19

2D Barcode VCL Components User Manual

5. Set the Image property of the 2D barcode component to the Timage, TQRImage, or TQRGzImage control.
Note:

If you use the TBarcode1D_UPCA, TBarcode1D_UPCE, TBarcode1D_UPCEO, TBarcode1D_UPCE1, TBarcode1D_EANS,
TBarcode1D_EAN13, or TBarcode1D_EAN128 component as the linear barcode component, its Height property should be set to a
value larger than zero.

The Image property of linear barcode component should not be normally set, the Image property's value of the 2D component will be
used.

3.9 How to add a logo to barcode symbol

Usage:

1. Put aTBarcode2D barcode component, such as the TBarcode2D QRCode, TBarcode2D_DataMatrixEcc200, and
TBarcode2D_GridMatrix to your form.

2. Puta TLogo2D component to your form.
3. Set the Barcode2D property of the TLogo2D component to the TBarcode2D barcode component.

4. Add a logo picture to the Picture property of the TLogo2D component. The "bmp", "jpg"/"jpeg", "wmf", "emf", "ico", "png",
"gif", and "tif"/"tiff" image formats are supported depend on the version of IDE.

5. Change the properties of the TLogo2D component to adjust the size and position of the logo picture.
If your TBarcode2D barcode component has linked to a Timage control, the barcode symbol with logo will be displayed in it.
If you use the DrawTo method to draw the barcode symbol to canvas, the logo will be drawn with the barcode symbol.
If you use the Print method to print the barcode symbol to paper, the logo will be printed with the barcode symbol.

If you use the TSave2D saving component to save the barcode symbol to picture file, including TSave2D_Bmp, TSave2D_Gif,
TSave2D_Jpg, TSave2D_Png, and TSave2D_Svg saving components, the logo will be saved with the barcode symbol. Note, the
TSave2D_Wmf, TSave2D_Emf, and TSave2D_Eps saving components don't save the logo picture.

3.10 How to print a barcode symbol to paper

Please use Print method of a barcode component to print the barcode symbol to paper. The Timage control isn't required.
For example:
Printer.BeginDoc;

Barcode2D QRCodel.Print ('1234567890', clBlack, clWhite, true, 20, 20, 0.3);

Printer.EndDoc;
or

Printer.BeginDoc;

20

2D Barcode VCL Components User Manual

with Barcode2D QRCodel do

begin
ShowQuietZone := true;
BarColor := clBlack;
SpaceColor := clWhite;
Barcode := '1234567890"';
Print (20, 20, 0.3);

end;

Printer.EndDoc;

3.11 How to save a barcode symbol to picture file

Usage:

1. Put aTBarcode2D barcode component, such as the TBarcode2D_QRCode, TBarcode2D_PDF417, and
TBarcode2D_RSS14 to your form.

2. Puta TSave2D component, such as the TSave2D_Bmp, TSave2D_Png, and TSave2D_Svg to your form.
3. Set the Barcode2D property of the TSave2D component to the TBarcode2D barcode component.
4. Use the Save method of the TSave2D component to save the barcode symbol to picture file.

Note:

For the EAN.UCC compisite barcode componenfiBarcode2D_CCA, TBarcode2D_CCB, or TBarcode2D_CCC, if its Linear
property is set, and for the TBarcode2D_MaxiCode component, please use the SaveToFile method of the Timage control that is
linked to the barcode component to save the barcode symbol as a picture file.

For example:
Imagel.Picture.Bitmap.SaveToFile ('C:\2Dbarcode.bmp"') ;

Also, You can bind multiple TSave2D components to a TBarcode2D barcode component in order to save the barcode symbol in
multipe formats.

3.12 How to encode the UNICODE text in a 2D barcode symbol

By default, the text will be encoded in ANSI ecnoding sheme, you can use other encoding scheme, such as the UTF-8, UTF-16LE,
UTF-16BE, etc.

e For Delphi/C++ Builder 2007 or early:

Method 1, please convert the text to your encoding scheme, then assign it to the Barcode property of the barcode component,
such as the TBarcode2D_QRCode, TBarcode2D_DataMatrixeCC200, and the TBarcode2D_PDF417. The BOM may be
placed depending on your application.

For example:

21

2D Barcode VCL Components User Manual

var BarcodeText: string;

BarcodeText := '....';

ed

I

Barcode2D QRCodel.Barcode := #SEF#$BB#S$BF + AnsiToUTF8 (BarcodeText) ;

Method 2, Please create the OnEncode event function for the barcode component, such as the TBarcode2D_QRCode,
TBarcode2D_DataMatrixECC200, and the TBarcode2D_PDF417. In the event function, you can encode the UNICODE textin
your encoding scheme. The BOM may be placed depending on your application.

For example:

var BarcodeText: string;

BarcodeText := '....';

Barcode2D QRCodel.Barcode := BarcodeText;

procedure TForml.Barcode2D QRCodelEncode (Sender: TObject; wvar Data: sAnsiString;
Barcode: string);
begin
The text is encoded in UTF-8 format, and the BOM is aced.
Data := #SEF#SBB#SBF + AnsiToUTF8 (Barcode) ;

end;

e For Delphi/C++ Builder 2009 or later:

Method 1, please convert the text to your encoding scheme, then assign it to the Data property of the barcode component,
such as the TBarcode2D_QRCode, TBarcode2D_DataMatrixeCC200, and the TBarcode2D_PDF417. The BOM may be

placed depending on your application.
For example:
Th text 1is n led in UTF-8 format, and th BOM 1 pla 1
var BarcodeText: string;

1 [

BarcodeText := el

Barcode2D QRCodel.Data := #SEF#$BB#$SBF + UTF8Encode (BarcodeText) ;

Method 2, Please create the OnEncode event function for the barcode component, such as the TBarcode2D_QRCode,
TBarcode2D_DataMatrixECC200, and the TBarcode2D_PDF417. In the event function, you can encode the UNICODE textin
your encoding scheme. The BOM may be placed depending on your application.

For example:

var BarcodeText: string;

BarcodeText := '...."';

Barcode2D QRCodel.Barcode := BarcodeText;

procedure TForml.Barcode2D QRCodelEncode (Sender: TObject; var Data: AnsiString;

Barcode: string);

begin

22

2D Barcode VCL Components User Manual

Data

end;

1= #SEF#S$SBB#$BF + UTF8Encode (Barcode) ;

23

2D Barcode VCL Components User Manual

Chapter 4. Reference

4.1 TBarcode2D

Itis the base class of all barcode components. And it cannot be instantiated. It's defined in the pBarcode2D unit.

Properties: Methods:
* Image e Create
e Barcode e Destroy
e Data (*) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight
Events:

e ShowQuietZone

e OnChange
e |eadingQuietZone

e OnEncode

e TopQuietZone
P e OnlnvalidChar
e TrailingQuietZone « OninvalidLength

e OninvalidDataChar (*)
e OninvalidDataLength (*)

e BottomQuietZone

e | ocked

e OnDrawBarcode

(*): The Data property, OninvalidDataLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.1 TBarcode2D AztecCode

The component is used to create the Aztec Code 2D Barcodes symbols. It's defined in the pAztecCode unit.

24

2D Barcode VCL Components User Manual

Aztec Code is a two-dimensional matrix symbology whose symbols are nominally square, made up of square
modules on a square grid, with a square bullseye pattern at their center. Aztec Code symbols can encode from small
to large amounts of data with user-selected percentages of error correction. All 256 8-bit values can be encoded.

:'I 1 .- h
Aztec Code is invented by Andrew Longacre, Jr. and Robert Hussey in 1995. The code was published by AIM, Inc. in Artec Code
1997. ltis used for small item marking applications using a wide variety of printing and marking technologies.
Formats

There are two basic formats of Aztec Code symbols:

e Compact: There is a 2-ring bullseye pattern in the symbol center. It's useful for encoding shorter messages efficiently.

You can use the SymbolMode property to specify which formats and Aztec Code symbol sizes (see also the "Symbol sizes" section
below) will be automatically selected between the minimum and maximum symbol sizes specified by corresponding MinSize and
MaxSize properties, based on the length of barcode text. It can be one of these values (defined in the pAztecCode unit):

e smNormal: Only the symbol sizes that they are useful for data encoding operation, including all compact symbol sizes
(azSize_15Compact, azSize_19Compact, azSize_23Compact, and azSize_27Compact), and full range symbol sizes from
azSize_31 to azSize_151.

e smCompact: Only the symbol sizes in compact format, including the azSize 15Compact, azSize 19Compact,
azSize_23Compact, and azSize_27Compact.

¢ smFullRange: Only the symbol sizes in full range format, including the azSize_19, azSize 23, azSize_27, and azSize_31 to
azSize_151.

e smProgram: Only the symbol sizes that they are useful for reader initialization, including azSize_15Compact, azSize 19,
azSize_23, azSize_27, and full range symbol sizes from azSize 31 to azSize_109. Note, in order to create a reader
initialization symbol, a "\p" escape sequence should be placed into the barcode text, and the AllowEscape property should be
set to true. See also the "Escape sequences" section below.

o smAll: All symbol sizes, including compact and full range formats.

Symbol sizes

The smallest Aztec Code symbol is 15 * 15 modules square, and the largest is 151 * 151. There are 36 square symbol sizes
available in Aztec Code symbology. These are specified in following table (defined in the pAztecCode unit):

25

2D Barcode VCL Components User Manual

. . . Maximum data capacities
Sizes Formats Layers Dimension (modules) —
Digits Text Bytes
azSize_15Compact Compact 1 15*15 13 12 6
azSize_19 Full range 1 19*19 18 15 8
azSize_19Compact Compact 2 19*19 40 33 19
azSize_23 Full range 2 23*23 49 40 24
azSize_23Compact Compact 3 23*23 70 57 33
azSize_27 Full range 3 27 *27 84 68 40
azSize_27Compact Compact 4 27 * 27 110 89 53
azSize_31 4 31*31 128 104 62
azSize_37 5 37*37 178 144 87
azSize_41 6 41* 41 232 187 114
azSize_45 7 45*45 294 236 145
azSize_49 8 49*49 362 291 179
azSize_53 9 53 *53 433 348 214
azSize_57 10 57 * 57 516 414 256
azSize_61 11 61*61 601 482 298
azSize_67 12 67 * 67 691 554 343
azSize_71 13 71*71 793 636 394
azSize_75 14 75*75 896 718 446
azSize_79 15 79*79 1008 808 502
azSize_83 16 83*83 1123 900 559
azSize_87 17 87 * 87 1246 998 621
azSize_91 Full range 18 91*91 1378 1104 687
azSize_95 19 95 *95 1511 1210 753
azSize_101 20 101 * 101 1653 1324 824
azSize_105 21 105 * 105 1801 1442 898
azSize_109 22 109 * 109 1956 1566 976
azSize_113 23 113*113 2116 1694 1056
azSize_117 24 117 *117 2281 1826 1138
azSize_121 25 121*121 2452 1963 1224
azSize_125 26 125*125 2632 2107 1314
azSize_131 27 131*131 2818 2256 1407
azSize_135 28 135*135 3007 2407 1501
azSize_139 29 139139 3205 2565 1600
azSize_143 30 143 * 143 3409 2728 1702
azSize_147 31 147 * 147 3616 2894 1806
azSize_151 32 151 *151 3832 3067 1914

Note:

e Full range symbols with 1, 2, or 3 layers (azSize_19, azSize_23, and azSize_27) are useful only for reader initialization.

e The data capacities shown are based on the recommended error correction levels (23 % of symbol capacity plus 3

codewords).

You can use the MinSize and the MaxSize properties to specify the minimum and maximum sizes for an Aztec Code symbol. The
smallest symbol size that accommodates the barcode text will be automatically selected between the minimum and maximum

symbol sizes.

If the barcode text does not fill the maximum data capacity of the Aztec Code symbol, remaining data capacity of the symbol will be
used as excess error correction. If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by
the MaxSize property, an OninvalidLength or OninvalidDataLength (only for Delphi/C++ Builder 2009 or later) event will occur. The

26

2D Barcode VCL Components User Manual

CurrentSize property can be used to get the factual symbol size.
Quiet zones

No quiet zone is required outside the bounds of the Aztec Code symbol. So the minimum values ofLeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 0.

Error checking and correcting (ECC)

The design of Aztec Code technically allows a symbol to include as little as none or as much as 99% in error correction codewords,
though both limits are unsound. The recommended level of error correction for normal use is 23% of symbol capacity plus 3
codewords more. They may also choose to override the default error correction level, specifying either an alternate minimum error
correction percentage or a fixed symbol format and ECC size.

Users, judging their applications to be especially benign or critical, may choose to specify an alternate minimum error correction
percentage (specified by the ECCLevel property), ranging from 0% to 99% plus always, for data security, 3 or more additional error
correction codewords (specified by the ECCCount property). This is called a "minimum" percentage because, depending on
message length, the symbology will typically have to add extra error correction codewords above this minimum to fill out the symbol.

Some applications will be best served by specifying a fixed size (number of codewords) to be used for all Aztec Code symbols
regardless of their data content. In this case, the ECCLevel property should be set to 0, and the ECCCount property should be set to
a size which includes adequate error correction for the longest message anticipated; then, typically shorter messages will be
encoded with excess error correction, creating more robust symbols for this application.

Character set
1. All 8-bit values can be encoded. The default interpretation shall be:

o Forvalues 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII); Note this version consists o
the GO set of ISO/IEC 646 and the CO set of ISO/IEC 6429 with values 28 to 31 modified to FS, GS, RS and U
respectively).

o Forvalues 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).
This interpretation corresponds to EC1000003.

2. Two non-data characters can be encoded, FNC1 for compatibility with some existing applications and ECI indicator blocks
for the standardized encoding of message interpretation information.

o FNC1: The FNC1 character following an application standard agreed with AIM International, identifies a symbol which
conforms to a specific industry standard. FNC1 shall be used as defined in the EAN.UCC General Specifications
either in the first position or implied by the mode character. The FNC1 character may also be used as a field
separator, in which case it will be represented in the transmitted message as GS character (ASCII value 29). The
escape sequence "\ can be used to place the FNC1 character to barcode text.

o ECI: The escape sequence "\e[m]" can be used to place the ECI indicator block to barcode text. See also the
"Extended Channel Interpretation (ECI)" section below.
The AllowEscape property should be set to true in order to place the FNC1 characters or the EClindicator blocks.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert them to the
barcode text:

e \\: Insert a backslash to barcode text.

e \f: Inserta FNC1 character to barcode text. See also the "Character set" section above.

¢ \e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation (ECI)"
section below.

¢ \s[<Index>,<Amount><Message_ID>]: Insert a structured append block to barcode text in order to create the symbol in a
structured append. See also the "Structured append” section below.

27

2D Barcode VCL Components User Manual

e \p: Indicates to create a reader initialization symbol. It can be placed anywhere in the barcode text. Only the
azSize_15Compact, azSize_19, azSize_23, azSize_27, and full range symbol sizes from azSize_31 to azSize_109 are
useful for reader initialization symbol, so the SymbolMode property should be set to "smProgram" in order to create the
reader initialization symbol.

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that of the
default character set. Four broad types of interpretations are supported in Aztec Code:

* International character sets (or code pages).

e General purpose interpretations such as encryption and compaction.

e User defined interpretations for closed systems.

e Control information for structured append in unbuffered mode.
The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after

decoding. The ECl is identified by an integer (up to 6 digits) which is encoded in the Aztec Code symbol by the ECI indicator block.
The escape sequence "\e[<ECI_Number>]" is used to place the EClindicator block to the barcode text:

e ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero is optional.

ECl indicator blocks may be placed anywhere in the barcode text in a single or structured append set of Aztec Code symbols. For
example:

ABC\e[123]DEFabc\e[000003]def

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until the end
of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI| may straddle two or more
symbols.

Structured append

In order to fit a non-square area or to handle larger messages than are practical in a single symbol, a data message can be
distributed across several Aztec Code symbols. Up to 26 Aztec Code symbols may be appended in a structured format to convey
more data. If a symbol is part of a structured append this shall be indicated by a structured append block in barcode text. The
escape sequence "\s[<Index>, <Amount>, <Message ID>]" is used to place the structured append block to the barcode text:

¢ Index: The position index of the symbol within the set of Aztec Code symbols in the structured append format. It's an integer
between 1 and 26 (including the boundaries) in string format.

e Amount: The total amount of the symbol within the set of Aztec Code symbols in the structured append format. It's an integer
between 2 and 26 (including the boundaries) in string format.

¢ Message_ID: An optional message ID. The field is any number of data characters excluding the space character, and shall be
the same for all symbols which comprise the same message. Though the field may be made up of any characters (except
additional spaces), the most efficient encoding will result if it is a string of uppercase letters.

The AllowEscape property should be set to true in order to place the structured append block. The structured append block may only
be placed only once in the barcode text. Also, it shall be placed at beginning of the barcode text. The OninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur if the structured append block be placed more than
once, or itisn't placed at beginning of the barcode text. The following is an example of structured append:

\s[2, 5, DESCRIPTION]ABCDEFGabcdefgl234567890

28

2D Barcode VCL Components User Manual

Properties: Methods:
e Image e Create
e Barcode e Destroy
e Data (¥) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight
Events:

e ShowQuietZone

e OnChange
e | eadingQuietZone

e OnEncode

e TopQuietZone
P e OnlnvalidChar
e TrailingQuietZone « OninvalidLength

e OnlinvalidDataChar (*)

e BottomQuietZone

e |ocked
e OninvalidDataLength (*)
e Inversed
e OnDrawBarcode
e Mirrored
e SymbolMode

e BytesAlwaysBackToUpper
e MinSize

* MaxSize

e ECCLevel

e ECCCount

e AllowEscape

e CurrentSize (Read only)

(*): The Data property, OninvalidDataLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.2 TBarcode2D_AztecRunes

The component is used to create the Aztec Runes 2D Barcode symbols. It's defined in the pAztecRunes unit.

Aztec Runes are a series of small but distinct machine-readable marks designed to be graphically compatible with
Aztec Code. They are in fact just the core symbol of a compact Aztec Code symbol with a numerically distinct mode

message which in this case conveys 8 bits of actual data. Thus they comprise 256 11x11 module square marks

which are conveniently found and read by an Aztec Code reader.

Aztec Runes

29

2D Barcode VCL Components User Manual

Symbol size

Each Aztec Runes symbol is of a fixed size, itis 11 * 11 modules square.

Quiet zones

No quiet zone is required outside the bounds of the Aztec Runes symbol. So the minimum values oflLeadingQuietZone,

TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 0.

Character set

All 8-bit values can be encoded, every Aztec Runes symbol can encode one 8-bit value, it's expressed in a decimal integer between
0 and 255 (including the boundaries), in string format, so only numeric characters can be used in the barcode text.

Data capacity

An integer between 0 and 255 (including the boundaries), in string format. The maximum length of barcode text is limited to 3 digits.

The FixedLength property specifies whether adding leading zeros are required if the length is less than 3 digits.

Properties:
e Image
e Barcode
e Data (¥)
* Module
e BarColor
e SpaceColor
e Orientation
e Stretch
e LeftMargin
e TopMargin
* BarcodeWidth
e BarcodeHeight
¢ ShowQuietZone
e |eadingQuietZone
e TopQuietZone
e TrailingQuietZone
¢ BottomQuietZone
* Locked
e Inversed
e Mirrored

e FixedLength

(*): The Data property, OninvalidDataLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or

later.

4.1.3 TBarcode2D CCA

Methods:

L]

L]

L]

Create

Destroy

Assign

Clear

Draw

Size
CopyToClipboard
DrawTo
DrawToSize

Print

PrintSize

Events:

L]

L]

L]

OnChange

OnEncode
OnlinvalidChar
OnlnvalidLength
OnlnvalidDataChar (*)
OnlinvalidDatalength (*)

OnDrawBarcode

30

2D Barcode VCL Components User Manual

The component is used to create the EAN.UCC compisite barcode symbol that uses LAWY ST
the CC-A as the 2D symbol. It's defined in the pCCA unit.

11150 . |
An EAN.UCC composite symbol consists of a linear symbol (encoding the item's mim“
primary identification) associated with an adjacent 2D symbol (encoding 17234567'850128
supplementary data, such as a batch number or expiration date). The CC-A is one of ~ ©&™# / RSS-14 CC-A [EAN-13
the three choices for the 2D symbol in a symbol encoded in the EAN.UCC composite symbology. It's a multi-row symbology
component derived from MicroPDF417, for use only in EAN.UCC composite symbols. It's designed for efficient encoding of

supplemental application identifier data.

Symbol sizes

The CC-A symbols have two, three, or four data columns. The number of columns will be automatically selected depending on the
linear symbol that's associated with the CC-A symbol (specified by the Linear property).

Each CC-A symbol consists of a stack of vertically-aligned rows (with a minimum of three and a maximum of twelve rows, referred to
as ccaRow_3 to ccaRow_10, and ccaRow_12, for example, the value ccaRow_5 denotations the CC-A symbol is 5 stacked rows,
they are defined in the pCCA unit). The RowHeight property can be used to specify the height for each row, in modules. The
allowable numbers of rows are specified separately for each of the two-, three-, and four-column symbol sizes. In other words, CC-A
symbols shall conform with certain predefined combinations of numbers of rows, columns. These symbol sizes are defined in
following table:

Number of data | Number of . Max Capacity
Liner symbol s o
columns rows in Bits

5| ccaRow_5 59

6 | ccaRow_6 78

7 | ccaRow_7 88

RSS-14 Stacked, RSS-14 Stacked Omnidirectional, UPC-E, UPC-EO,
2 8 [ccaRow_8 108
UPC-E1

9 | ccaRow_9 118
10|ccaRow_10 138
12|ccaRow_12 167

4 | ccaRow_4 78

5 [ccaRow_5 98

3 6 | ccaRow_6 RSS Limited, EAN-8 118
7 | ccaRow_7 138

8 | ccaRow_8 167

3 | ccaRow_3 78

4 | ccaRow_4 108

RSS-14 Standard, RSS-14 Truncated, RSS Expanded, RSS Expanded

4 5 | ccaRow S Stacked, UPC-A, EAN-13, EAN-128 138
6 | ccaRow_6 167

7 | ccaRow_7 197

You can use the MinRows property to specify a minimum number of stacked rows, and use the MaxRows property to specifiy a
maximum number of stacked rows. the smallest number of stacked rows that accommodates the barcode text will be automatically
selected between the minimum and the maximum number of stacked rows.

You can use the CurrentRows property to get the factual number of stacked rows.

If the barcode text is so long that it cannot be encoded using the maximum number of stacked rows specified by the MaxRows
property, an OninvalidLength or OninvalidDataLength (only for Delphi/C++ Builder 2009 or later) event will occur.

Quiet zones

For the CC-A symbol, The leading quiet zone and trailing quiet zone shall be a minimum of 1 modules. No top quiet zone and bottom
quiet zone are required outside the bounds of the CC-A symbol.

31

2D Barcode VCL Components User Manual

The LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties specify the size of quiet zones for entire
EAN.UCC composite symbol, they are not only for the CC-A 2D symbol. So the minimum values of these properties are equal to 0.
See diagram (the SpaceColor property value is set to cISilver in order to accentuate the quiet zones):

TopQuietZone
—=| [=— LeadingQuistZone | 1

a4 o I f

* ABCDE

t TrailingQuietZone —m={ [
BottomQuietZone

If the linear component is the TBarcode1D_UPCE, TBarcode1D_ UPCEQ, TBarcode1D_UPCE1, TBarcode1D_UPCA,
TBarcode1D_ENAS, or TBarcode1D_EAN13, and its left quiet zone mark is represented (the TextAlignment property's value is set
to taCustom, and for the TBarcode1D_ENA8 component, the ShowQuietZoneMark property is set to true too), the leading quiet
zone will be represented even if the ShowQuietZone property is set to false, the minimum width of leading quiet zone that is the
distance between the left side of the left quiet zone mark of the linear symbol and the first bar of the 2D symbol will be used.
Similarly, if its right quiet zone mark is represented (the TextAlignment property's value is set totaCustom, and for the
TBarcode1D_ENAS8 and TBarcode1D_EAN13 components, the ShowQuietZoneMark property is set to true too), the trailing quiet
zone will be represented even if the ShowQuietZone property is set to false, the minimum width of trailing quiet zone that is the
distance between the last bar of the 2D symbol and the right side of the right quiet zone mark of the linear symbol will be used. In
other words, the leading and trailing quiet zoens will be automatically extanded to cover the left and right quiet zone marks,
regardless of whether the ShowQuietZone property is set to true or false. See diagram (the SpaceColor property value is set to
clSilver in order to accentuate the quiet zones):
LeadingQuietZone TrailingQuistZons

—- | —- |-

LTS LT (ShowQuietZone = True) and

Minimum value of (LeadingQuistZone > Minimum

LeadingQuistZone | Minimum valus of value of LeadingQuietZone)
Width of Laft TrailingQuistZone)
Quiet Zone Mark Width of Right (ShowQuietZone = True) and
_-_Quiet Zona Mark (TrailingQuietZone > Minimum
23455773921 value of TrailingQuietZane)
—| |— —||—

LeftQuietZoneSpacing RightQuistZoneSpacing

Minimum walue of LeadingQuietZone

——

RSN KT TLLL - P (ShowQuietZone = False) or
(LeadingQuistZone <= Minimum
value of LeadingQuistZone)

(ShowQuietZone = False) or
(TrailingQuietZone <= Minimum
value of TrailingQuistZone)

Minimum value of TrailingQuistZone

If the linear component is the TBarcode1D_ UPCE, TBarcode1D_ UPCEO, TBarcode1D UPCE1, TBarcode1D_UPCA,
TBarcode1D_ENAS, TBarcode1D_EAN13, or TBarcode1D_EAN128, and its human readable text is represented and exceeds the
beginning or end of entire EAN.UCC barcode symbol (the leading and trailing quiet zones is included if the ShowQuietZone property
is set to true), the leading and trailing quiet zoens will be extanded automatically to cover the human readable text, regardless of
whether the ShowQuietZone property is set to true or false. See diagram (the SpaceColor property value is set to cISilver in order to
accentuate the quiet zones):

32

2D Barcode VCL Components User Manual

LeadingQuistZone TrailingQuistFona

TN R e

82345678908

(ShowQuietZone = True) and
(LeadingQuietZone > Minimum
value of LeadingQuietZone)

L

suoziainhbuljes)
JD EII'h'Eﬂ LLEPILLEL |y

(ShowQuietZone = True) and
(TrailingQuietZone > Minimum
value of TrailingQuistZone)

auozinibuipea
4O BR|EA LMW

Minimum value of Minimum value of
LeadingQuietZone TrailingQuietZone

— |
LB 2L H] PSR A (ShowQuietZone = False) or
(LeadingQuietZone <= Minimum
value of LeadingQuistZone)
(ShowQuietZone = False) or
(TrailingQuistZone <= Minimum
82345678908 value of TrailingQuietZona)

Separator pattern

A separator pattern is required between the linear and 2D symbols of an EAN.UCC composite barcode symbol. If you use the
TBarcode2D_CCA component together with a TBarcode2D_RSS14, TBarcode2D_RSSLimited, TBarcode2D_RSSExpanded, or

TBarcode1D_EAN128 linear barcode component (specified by the Linear property), the separator pattern will be represented by

the linear component. If you use the TBarcode2D_CCA component together with a TBarcode1D_UPCA, TBarcode1D_UPCE,

TBarcode1D_UPCEDO, TBarcode1D_UPCE1, TBarcode1D_EANS, or TBarcode1D_EAN13 linear barcode component (specified

by the Linear property), the separator pattern will be represented by the TBarcode2D CCA component. See digiam (the color of
separator patterns are changed to red in order to accentuate them):

IIFRT LTI EL L i UL

172345677890128
CC-A / RS5-14 CC-A / EAN-13

Note, the TBarcode1D_UPCA, TBarcode1D_UPCE, TBarcode1D_UPCEO, TBarcode1D_UPCE1, TBarcode1D_EANS,
TBarcode1D_EAN13, and TBarcode1D_EAN128 linear components are in the Barcode VCL Components package.

Error checking and correcting (ECC)

Each defined CC-A symbol size has a fixed number of error correction codewords. The error correction codewords provide
capability for both error detection and correction.

Character set

A subset of ISO/IEC 646, consisting of the upper and lower case letters A-Z, a-z), digits (0-9), space, and 19 selected punctuation
characters (1:%&()*+,-./;;<=>7_) in addition to the special function characters, FNC1 and symbol separator.

If you want insert the FNC 1, please insert the ™" character instead. And if you want insert the symbol separator, please insert the "#"
character instead.

Note, in the barcode text, all Application Identifiers should be enclosed in parentheses "(" and ")", the parentheses are only for
identifying Application Identifiers, and they are not encoded into the barcode symbol. If you want encode the parentheses "(" and ")"
in an Application Identifier element string, please use the "{" and "}" instead.

33

2D Barcode VCL Components User Manual

Properties:

L]

L]

L]

Image

Barcode

Data (*)

Module

BarColor
SpaceColor
Orientation
Stretch
LeftMargin
TopMargin
BarcodeWidth
BarcodeHeight
ShowQuietZone
LeadingQuietZone
TopQuietZone
TrailingQuietZone
BottomQuietZone
Locked
RowHeight
Linear

MinRows
MaxRows

CurrentRows (Raead only)

Methods:

L]

L]

L]

Create

Destroy

Assign

Clear

Draw

Size
CopyToClipboard
DrawTo
DrawToSize

Print

PrintSize

Events:

L]

L]

L]

OnChange

OnEncode
OnlinvalidChar
OnlnvalidLength
OnlnvalidDataChar (*)
OnlinvalidDataLength (*)

OnDrawBarcode

(*): The Data property, OninvalidDataLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or

later.

4.1.4 TBarcode2D_CCB

The component is used to create the EAN.UCC compisite barcode symbol that uses
the CC-B as the 2D symbol. It's defined in the pCCB unit.

Mmimmml
primary identification) associated with an adjacent 2D symbol (encoding H 172345677830128

An EAN.UCC composite symbol consists of a linear symbol (encoding the item's

supplementary data, such as a batch number or expiration date). The CC-B is one of
the three choices for the 2D symbol in a symbol encoded in the EAN.UCC composite symbology. A CC-B symbol is a

MicroPDF417 symbol with a codeword of 920 in the first data position.

Symbol sizes

CC-B / RS5-14

[RGB AL A]

CC-B / EAN-13

The CC-B symbols have two, three, or four data columns (The one-columnMicroPDF417 symbol isn't used). The number of columns
will be automatically selected depending on the linear symbol that's associated with the CC-B symbol (specified by theLinear
property).

34

2D Barcode VCL Components User Manual

Each CC-B symbol consists of a stack of vertically-aligned rows (with a minimum of four and a maximum of forty four rows, referred
to as ccbRow_4 to ccbRow_44, for example, the value ccbRow_8 denotations the CC-B symbol is 8 stacked rows, they are defined
in the pCCB unit). The RowHeight property can be used to specify the height for each row, in modules. The allowable numbers of
rows are specified separately for each of the two-, three-, and four-column symbol sizes. In other words, CC-B symbols shall conform
with certain predefined combinations of numbers of rows, columns. These symbol sizes are defined in following table:

Number of data | Number of Liner symbol Max_ Capacity
columns rows in Bits
8 [ccbRow_8 59
11)|ccbRow_11 78
14|ccbRow_14 o 88
9 17| ccbRow_17 RSS-14 Stacked, RSS-14 Sta%(;tcjz_OETnldlrectlonal, UPC-E, UPC-EO, 108
20|ccbRow_20 118
23|ccbRow_23 138
26|ccbRow_26 167
6 | ccbRow_6 78
8 | ccbRow_8 98
10|ccbRow_10 98
12|ccbRow_12 118
3 15|ccbRow._15 RSS Limited, EAN-8 138
20|ccbRow_20 167
26|ccbRow_26 167
32|ccbRow_32 167
38|ccbRow_38 167
44|ccbRow_44 167
4 | ccbhRow_4 78
6 | ccbRow_6 98
8 | ccbRow_8 98
10|ccbRow_10 98
12|ccbRow_12 118
4 15|ccbRow 15 RSS-14 Standards,tzz(se;’élUng\ia,teEckr\lﬁi Ié);pszd;g RSS Expanded 138
20|ccbRow_20 167
26|ccbRow_26 167
32|ccbRow_32 167
38|ccbRow_38 167
44 |ccbRow_44 167

You can use the MinRows property to specify a minimum number of stacked rows, and use the MaxRows property to specifiy a
maximum number of stacked rows. the smallest number of stacked rows that accommodates the barcode text will be automatically
selected between the minimum and the maximum number of stacked rows.

You can use the CurrentRows property to get the factual number of stacked rows.

If the barcode text is so long that it cannot be encoded using the maximum number of stacked rows specified by the MaxRows
property, an OninvalidLength or OninvalidDataLength (only for Delphi/C++ Builder 2009 or later) event will occur.

Quiet zones

For the CC-B symbol, The leading quiet zone and trailing quiet zone shall be a minimum of 1 modules. No top quiet zone and bottom
quiet zone are required outside the bounds of the CC-B symbol.

The LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties specify the size of quiet zones for entire
EAN.UCC composite symbol, they are not only for the CC-B 2D symbol. So the minimum values of these properties are equal to 0.
See diagram (the SpaceColor property value is set to cISilver in order to accentuate the quiet zones):

35

2D Barcode VCL Components User Manual

TopQuietZone
—=| [=— LeadingQuistZone | 1
1

[& *

* ABCDE

t TrailingQuietZone —m={ [
BottomQuietZone

If the linear component is the TBarcode1D_UPCE, TBarcode1D_ UPCEO, TBarcode1D_UPCE1, TBarcode1D_UPCA,
TBarcode1D_ENAS, or TBarcode1D_EAN13, and its left quiet zone mark is represented (the TextAlignment property's value is set
to taCustom, and for the TBarcode1D_ENA8 component, the ShowQuietZoneMark property is set to true too), the leading quiet
zone will be represented even if the ShowQuietZone property is set to false, the minimum width of leading quiet zone that is the
distance between the left side of the left quiet zone mark of the linear symbol and the first bar of the 2D symbol will be used.
Similarly, if its right quiet zone mark is represented (the TextAlignment property's value is set totaCustom, and for the
TBarcode1D_ENAS8 and TBarcode1D_EAN13 components, the ShowQuietZoneMark property is set to true too), the trailing quiet
zone will be represented even if the ShowQuietZone property is set to false, the minimum width of trailing quiet zone that is the
distance between the last bar of the 2D symbol and the right side of the right quiet zone mark of the linear symbol will be used. In
other words, the leading and trailing quiet zoens will be automatically extanded to cover the left and right quiet zone marks,
regardless of whether the ShowQuietZone property is set to true or false. See diagram (the SpaceColor property value is set to
clSilver in order to accentuate the quiet zones):

LeadingQuietZone TrailingQuistZons
[—| [-—

LT HRC R (ShowQuietZone = True) and
Minimum value of ____ (LeadingQuistZone > Minimum

LeadingQuistZone | Minimum valus of value of LeadingQuietZone)

’ TrailingQuistZone
Q\I:'i.r:al?t;qﬁi;LﬁZtrk Width of Right (ShowQuietZone = True) and

Quict Zone Mark (TrailingQuietZone > Minimum
23455773921 value of TrailingQuietZane)

—| |— || —
LeftQuietZoneSpacing RightQuistZoneSpacing

-

Minimum walue of LeadingQuietZone

—| |-—
THLU HHE VI [ShowQuietZone = False) or
(LeadingQuistZone <= Minimum
value of LeadingQuistZone)

(ShowQuietZone = False) or
(TrailingQuietZone <= Minimum
value of TrailingQuistZone)

Minimum value of TrailingQuistZone

If the linear component is the TBarcode1D_UPCE, TBarcode1D_ UPCEO, TBarcode1D UPCE1, TBarcode1D_UPCA,
TBarcode1D_ENAS, TBarcode1D_EAN13, or TBarcode1D_EAN128, and its human readable text is represented and exceeds the
beginning or end of entire EAN.UCC barcode symbol (the leading and trailing quiet zones is included if the ShowQuietZone property
is set to true), the leading and trailing quiet zoens will be extanded automatically to cover the human readable text, regardless of
whether the ShowQuietZone property is set to true or false. See diagram (the SpaceColor property value is set to cISilver in order to
accentuate the quiet zones):

36

2D Barcode VCL Components User Manual

LeadingQuistZone TrailingQuistFona

THEUR HREARIFL "

5? 5% (ShowQuietZone = True) and
25 =5 (LeadingQuietZone > Minimum
BE —= e a3 E value of LeadingQuietZone)

,E:. 3 rgl 3

== =

EN'R && (ShowQuietZone = True) and
E% g i (TrailingQuietZone > Minimum
29 [+] ol .

FR=S 82345678908 m 8, value of TrailingQuietZone)

Minimum value of Minimum value of
LeadingQuietZone TrailingQuietZone

— |
THLUMS HREARW (ShowQuietZone = False) or
(LeadingQuietZone <= Minimum
value of LeadingQuistZone)

(ShowQuietZone = False) or
(TrailingQuistZone <= Minimum

82345678908 value of TrailingQuietZona)

Separator pattern

A separator pattern is required between the linear and 2D symbols of an EAN.UCC composite barcode symbol. If you use the
TBarcode2D_CCB component together with a TBarcode2D_RSS14, TBarcode2D_RSSLimited, TBarcode2D_RSSExpanded, or

TBarcode1D_EAN128 linear barcode component (specified by the Linear property), the separator pattern will be represented by

the linear component. If you use the TBarcode2D_CCB component together with a TBarcode1D_UPCA, TBarcode1D_UPCE,

TBarcode1D_UPCEO, TBarcode1D_UPCE1, TBarcode1D_EANS, or TBarcode1D_EAN13 linear barcode component(specified

by the Linear property), the separator pattern will be represented by the TBarcode2D _CCB component. See digiam (the color of
separator patterns are changed to red in order to accentuate them):

1) T TR ORI

Iltmimmml
H 17234567'890128

CC-B / RSS-14 CC-B / EAN-13

Note, the TBarcode1D_UPCA, TBarcode1D_UPCE, TBarcode1D_UPCEO, TBarcode1D_UPCE1, TBarcode1D_EANS,
TBarcode1D_EAN13, and TBarcode1D_EAN128 linear components are in the Barcode VCL Components package.

Error checking and correcting (ECC)

Each defined CC-B symbol size has a fixed number of error correction codewords. The error correction codewords provide
capability for both error detection and correction.

Character set

A subset of ISO/IEC 646, consisting of the upper and lower case letters A-Z, a-z), digits (0-9), space, and 19 selected punctuation
characters (1:%&()*+,-./;;<=>7_) in addition to the special function characters, FNC1 and symbol separator.

If you want insert the FNC 1, please insert the ™" character instead. And if you want insert the symbol separator, please insert the "#"
character instead.

Note, in the barcode text, all Application Identifiers should be enclosed in parentheses "(" and ")", the parentheses are only for
identifying Application Identifiers, and they are not encoded into the barcode symbol. If you want encode the parentheses "(" and ")"
in an Application Identifier element string, please use the "{" and "}" instead.

37

2D Barcode VCL Components User Manual

Properties:
e Image
e Barcode
e Data (¥)
* Module
e BarColor
e SpaceColor
e Orientation
e Stretch
e LeftMargin
e TopMargin
e BarcodeWidth
e BarcodeHeight
¢ ShowQuietZone
e | eadingQuietZone
e TopQuietZone
e TrailingQuietZone
¢ BottomQuietZone
e Locked
e RowHeight
e Linear
* MinRows
e MaxRows

e CurrentRows (Raead only)

Methods:

L]

L]

L]

Create

Destroy

Assign

Clear

Draw

Size
CopyToClipboard
DrawTo
DrawToSize

Print

PrintSize

Events:

L]

L]

L]

OnChange

OnEncode
OnlinvalidChar
OnlnvalidLength
OnlnvalidDataChar (*)
OnlinvalidDatalength (*)

OnDrawBarcode

(*): The Data property, OninvalidDataLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or

later.

4.1.5 TBarcode2D CCC

The component is used to create the EAN.UCC compisite barcode symbol that uses the CC-C as I

the 2D symbol. It is defined in the pCCC unit.

An EAN.UCC composite symbol consists of a linear symbol (encoding the item's primary
identification) associated with an adjacent 2D symbol (encoding supplementary data, such as a

AB 1234567830
CC-C / EAN-128

batch number or expiration date). The CC-C is one of the three choices for the 2D symbol in a
symbol encoded in the EAN.UCC composite symbology. A CC-C symbol is 8PDF417 symbol with a codeword of 920 in the first

data position.

Symbol sizes

Each CC-C symbol consists of a stack of vertically aligned rows with a minimum of 3 rows (maximum 90 rows). Each stacked row
shall include a minimum of 1 symbol character column (maximum 30 symbol character columns), excluding start, stop and row
indicator columns. They are defined in the pPDF417Custom unit. The RowHeight property can be used to specify the height for each

38

2D Barcode VCL Components User Manual

stacked row, in modules. See diagram:

| character

Stop row indicator

Start pattern
Start row indicator
Stop pattern

Symb

You can use the MinRows and the MaxRows properties to specifiy the minimum and maximum number of stacked rows fora CC-C
symbol. And use the MinColumns and the MaxColumns properties to specifiy the minimum and maximum number of symbol
character columns for it. In other words, the MinRows and MinColumns properties specify a minimum symbol size, and the MaxRows
and MaxColumns properties specify a maximum symbol size. According to the priority order specified by the StretchOrder property,
the first symbol size that accommodates the barcode text will be automatically selected between the minimum symbol size and the
maximum symbol size.

You can use the CurrentRows property to get the factual number of stacked rows. And use the CurrentColumns property to get the
factual number of columns.

If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by the MaxRows and the
MaxColumns properties, an OninvalidLength or OninvalidDataLength (only for Delphi/C++ Builder 2009 or later) event will occur.

Quiet zones

For the CC-C symbol, The leading quiet zone and trailing quiet zone shall be a minimum of 2 modules. No top quiet zone and bottom
quiet zone are required outside the bounds of the CC-C symbol.

The LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties specify the size of quiet zones for entire

EAN.UCC composite symbol, they are not only for the CC-C 2D symbol. So the minimum values ofrailingQuietZone,

TopQuietZone, and BottomQuietZone properties are equal to 0. For the LeadingQuietZone property, the minimum values of the

property is equal to 2 because the first bar of the CC-C symbol is on the left of the EAN-128 symbol always. See diagram (the
SpaceColor property value is set to cISilver in order to accentuate the quiet zones):

TopQuietZone
—=| |=— LeadingQuistZone 1

T_ TrailingQuietZone —s=| [
BottomQuietZone

If the linear component is the TBarcode1D_UPCE, TBarcode1D_UPCEO, TBarcode1D_UPCE1, TBarcode1D_UPCA,
TBarcode1D_ENAS, TBarcode1D_EAN13, or TBarcode1D_EAN128, and its human readable text is represented and exceeds the
beginning or end of entire EAN.UCC barcode symbol (the leading and trailing quiet zones is included if the ShowQuietZone property
is set to true), the leading and trailing quiet zoens will be extanded automatically to cover the human readable text, regardless of
whether the ShowQuietZone property is set to true or false. See diagram (the SpaceColor property value is set to cISilver in order to
accentuate the quiet zones):

39

2D Barcode VCL Components User Manual

LeadingQuistZone TrailingQuietZona

(ShowQuietZone = True) and
(LeadingQuistZone > Minimum
value of LeadingQuietZone)

(ShowQuietZone = True) and
(TrailingQuietZone > Minimum
value of TrailingQuietZone)

aucziInhbuipesn
42 2N|EA WU
suoziainiybuljes)
30 Eﬁ'Eﬂ LEPVLLEPLET |

2345678901234567

Minimum value of Minimum valus of
LeadingQuietZone TrailingQuistZons
A ¥ FIEN ' Al b " 1yl (ShowQuietZone = False) or

(LeadingQuietZone <= Minimum
value of LeadingQuistZone)

(ShowQuietZone = False) or
(TrailingQuietZone <= Minimum

234567890 12345678 value of TrailingQuistZone)

Separator pattern

A separator pattern is required between the EAN-128 linear and CC-C 2D symbols of an EAN.UCC composite barcode symbol.
The separator pattern will be represented by the TBarcode1D_EAN128 linear component (specified by the Linear property). See
digiam (the color of separator patterns are changed to red in order to accentuate them):

AB1234567830
CC-C / EAN-128

Note, the TBarcode1D_EAN128 linear component is in the 1D Barcode VCL Components package.
Error checking and correcting (ECC)

In fact, a CC-C symbol is a specialPDF417 symbol, so CC-C symbols offer 9 levels of error correction too, referred to as ECC 0 to
ECC 8 respectively in increasing order of recovery capacity. You can use the ECCLevel property to specify the error correction code

level for a CC-C symbol. It can be one of values fromelEcc_0 to elEcc_8, corresponding to error correction code level from ECC 0
to ECC 8. They are defined in the pPDF417Custom unit.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by current symbol
size will by used for creating more robust symbols. Note, the new level is always no lower than the level specified by the ECCLevel
property, and the symbol size will not be increased, it may be determined based on the length of barcode text, and the error
correction code level specified by the ECCLevel property, in other words, only the remaining capacity in current symbol size will be
used to upgrade the error correction code level. The CurrentECCLevel property can be used to get the factual error correction code
level.

Character set

A subset of ISO/IEC 646, consisting of the upper and lower case letters A-Z, a-z), digits (0-9), space, and 19 selected punctuation
characters (1:%&()*+,-./:;<=>?_) in addition to the special function characters, FNC1 and symbol separator.

If you want insert the FNC 1, please insert the ™" character instead. And if you want insert the symbol separator, please insert the "#"
character instead.

Note, in the barcode text, all Application Identifiers should be enclosed in parentheses "(" and ")", the parentheses are only for
identifying Application Identifiers, and they are not encoded into the barcode symbol. If you want encode the parentheses "(" and ")"
in an Application Identifier element string, please use the "{" and "}" instead.

40

2D Barcode VCL Components User Manual

Properties: Methods:
e Image e Create
e Barcode e Destroy
e Data (¥) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight
Events:

e ShowQuietZone

e OnChange
e | eadingQuietZone

e OnEncode

TopQuietZone
TrailingQuietZone
BottomQuietZone
Locked
RowHeight
Linear

MinRows
MaxRows
MinColumn
MaxColumn
StretchOrder
ECCLevel
ECCLevelUpgrade

Compact

L]

OnlnvalidChar
OnlnvalidLength
OnlnvalidDataChar (*)

OnlinvalidDatalength (*)

OnDrawBarcode

e CurrentRows (Raead only)
e CurrentColumns (Read only)

e CurrentECCLevel (Read only)

(*): The Data property, OninvalidDataLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.6 TBarcode2D Code16K

The component is used to create the Code 16K 2D Barcode symbols. It's defined in the pCode 16K unit.

41

2D Barcode VCL Components User Manual

Code 16K was developed by Ted Wiliams in 1989 to provide a simple to print and decode multiple row

symbology. It's a continuous, variable-length, stacked 2D barcode symbology that can encode the complete ASCII

128-character set. Extended ASCII characters (ASCII value 128 to 255) may also be encoded by using function
character.

Each Code 16K symbol contains from 2 to 16 rows. Each row is divided by a separator bar. The top and bottom of the symbol also
have separator bars that extend to the ends of the minimum quiet zones.

Symbol size

Each Code 16K symbol contains from 2 to 16 stacked rows, with 5 ASCII characters per stacked row. TheRowHeight property can
be used to specify the height for each stacked row, in modules. The data capacities are listed in following table:

Maximum data capacities
Rows
Numeric characters ASCII characters
2 14 7
3 24 12
4 34 17
5 44 22
6 54 27
7 64 32
8 74 37
9 84 42
10 94 47
11 104 52
12 114 57
13 124 62
14 134 67
15 144 72
16 154 77

You can use the MinRows and the MaxRows properties to specify the minimum and maximum number of stacked rows for a Code
16K symbol. They can be one of values from 2 to 16 (defined in the pCode 16K unit). The smallest number of symbol stacked rows
that accommodates the barcode text will be automatically selected between minimum and maximum number of stacked rows.

If the barcode text does not fill the maximum data capacity of the Code 16K symbol, remaining data capacity of the symbol will be
filled by adding the PAD characters automatically. If the barcode text is so long that it cannot be encoded using the maximum
number of stacked rows specified by the MaxRows property, an OnlinvalidLength or OninvalidDataLength (only for Delphi/C++
Builder 2009 or later) event will occur. You can use the CurrentRows property to get the factual number of stacked rows.

The Code 16K symbol width is 81 modules (inclusive of minimumleading quiet zone and trailing quiet zone). The minimum row
height value is 8 times the module width. So the smallest Code 16K symbol is 81 * 19 modules square and the largest is 81 * 145
modules square (inclusive of minimum quiet zones, the row height is set to 8 modules, and the separator bar height is set to 1
module).

The minimum value of the module width is 7.5 mils (0.19 mm). So the minimum physical size is 15.4mm * 3.6mm. The maximum
data density is 208 alphanumeric characters per square inch or 417 numeric digits per square inch when the symbol is printed at 7.5
mils.

Quiet zones

The leading quiet zone shall be a minimum of 10 modules, the trailing quiet zone shall be a minimum of 1 modules. No top quiet
zone and bottom quiet zone are required outside the bounds of the symbol.

So the minimum value of LeadingQuietZone property is equal to 10, the minimum value of TrailingQuietZone property is equal to 1,
and the minimum value of TopQuietZone, and BottomQuietZone properties are equal to 0.

42

2D Barcode VCL Components User Manual

Character set

e All 128 ASClIcharacters, i.e. ASCIl characters 0 to 127 inclusive, in accordance with ISO/I[EC 646:1991.

Code 16K has three unique data character sets as code sets A, B and C, all 128 ASCII characters are encoded by internally
switching between all 3 code sets:

o

o

o

Code set A: Includes characters with ASCII values from 00 to 95 (i.e. all of the standard upper case alphanumeric
characters together with the control characters inclusive), and function characters.

Code set B: Includes characters with ASCII values from 32 to 127 (i.e. all of the standard upper case alphanumeric
characters together with the lower case alphabetic characters inclusive), and function characters.

Code set C: includes the set of 100 digit pairs from 00 to 99 inclusive, as well as seven special characters. This allows
numeric data to be encoded, two data digits per symbol character, at effectively twice the density of standard data.

The code set will be switched automatically in a Code 16K symbol in order to minimize the symbol size. Also, you can
manually switch the code set by using following escape sequences:

o

o

o

\a: Switch to code set A.
\b: Switch to code set B.

\c: Switch to code set C.

The AllowEscape property should be set to true in order to place these escape sequences. If the symbol mode specified by
the InitialMode property is set to emCodeC_Shift1B, they cannot be used as the first character in the symbol. If the InitialMode
property is set to emCodeC_Shift2B, they cannot be used as the first two characters in the symbol. In addition they can be
placed anywhere within the symbol.

e Characters with ASCII values 128 to 255 in accordance with ISO 8859-1:1998 may also be encoded. This is done by
internally using the FNC4 character together with code sets A, B and C.

e 4 function characters, and PAD character:

o

FNC1: The FNC1 character following an application standard agreed with AIM International, identifies a symbol which
conforms to a specific industry standard. FNC 1 shall be used as defined in the EAN.UCC General Specifications either
in the first position or implied by the mode character. The FNC1 character may also be used as a field separator, in
which case it will be represented in the transmitted message as GS character (ASCII value 29). The escape sequence
"\1" can be used to place the FNC1 character to barcode text.

FNC2: It's used internally to create a message append defined below. The escape sequence "\2" can be used to place
the FNC2 character to barcode text. In general, you shouldn't place the FNC2 to the barcode text, it's used internally by
the component when the symbol is in a message append. See also the "Message append" section below.

FNC3: Initialize. This instructs the reader to interpret the data contained in the symbol for reader initialization or
programming. The FNC3 may be placed anywhere within the symbol. The escape sequence 13" can be used to place
the FNC3 character to barcode text.

FNC4: It's used internally together with code sets A, B and C to encode the extended ASCII characters (ASCII values
from 128 to 255). The FNC4 character cannot be placed to barcode text directly, it's used internally by the component.

PAD: If the barcode text does not fill the maximum data capacity of a Code 16K symbol, PAD characters will be added
automatically to fill the remaining data capacity of the symbol. Also, you can place a PAD character anywhere in the
barcode symbol by using the escape sequence "\p", in order to create the special Code 16K symbol for closed system.

The AllowEscape property should be set to true in order to place the functions characters, or the PAD character.

Initial modes

Code 16K has initial modes which are used to specify the initial code set and may also represent an implied leading FNC1
character or implied leading SHIFT B character as shown in following table. The code set will be automatically switched if a
character is encountered that cannot be encoded by current code set. And implied characters function as if they were actual symbol
characters but don not occupy any space.

43

2D Barcode VCL Components User Manual

There are seven kinds of initial mode, from 0 to 6, and a kind of extended data length mode. The initial mode values fromemCodeA
to emExtended, corresponding to these modes, are defined in the pCode16K unit. These modes and their values are listed in
following table:

Initial Initial) | lied -
Value code Description
Mode character
set
emCodeA (None) |The code set will be automatically switched if another code set character is
emCodeB (None) encountered.
emCodeC

emCodeB_FNC1
emCodeC_FNC1

slw|v|alo
OW|O|m|>
Z
)
=
e

First character excepting the message append block (if exists), must be code
set B character (ASCIl 32 - ASCIlI 127), otherwise a®ninvalidChar or
5 emCodeC_Shift1B| C | SHIFTB |OninvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.
The code set will be automatically switched if another code set character is
encountered.

First two characters excepting the message append block (if exists), must be
code set B characters (ASCII 32 - ASCII 127), otherwise afninvalidChar or

6 emCodeC_ShiftzB| C le-c|)|gl')r|% OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.
The code set will be automatically switched if another code set character is
encountered.

Extended Indicates to create a Code 16K barcode symbol in extended data length
data mode. An extended data length mode block is required, and it should be

emMode_Extended| B None |placed at beginning of barcode text, otherwiset the OninvalidChar or
OnlinvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.
See also the "Extended data length mode" section below.

length
mode

The InitialMode property can be used to specify the initial mode for a Code 16K symbol. It can be one of values shown in table
above, corresponding to the initial modes O to 6, and the extended data length mode. Also, it can be set to emAuto (defined in the
pCode16K unit), in this case, one of values from emCodeA to emModeC_Shift2B, corresponding to the initial modes 0 to 6 shown
in table above will be selected automatically, depending on the barcode text, in order to minimize the symbol size.

You can always use the CurrentMode property to get the factual initial mode.
Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert them to the
barcode text:

o \\ Insert a backslash to barcode text.

e \1:Inserta FNC1 character to barcode text. See also the "Character set" section above.

e \2: Insert a FNC2 character to barcode text. See also the "Character set" section above.

e \3: Insert a FNC3 character to barcode text. See also the "Character set" section above.

¢ \a: Manually switch code set to code set A. See also the "Character set" section above.

¢ \b: Manually switch code set to code set B. See also the "Character set" section above.

e \c: Manually switch code set to code set C. See also the "Character set" section above.

¢ \p: Insert a PAD character to barcode text. See also the "Character set" section above.

¢ \m[<Index>, <Amount>]: Insert a extended data length mode block to barcode text in order to create the symbol in extended
data length mode. See also the "Extended data length mode" section below.

¢ \s[<Index>, <Amount>]: Insert a message append block to barcode text in order to create the symbol in a message append.
See also the "Message append" section below.

Extended data length mode

The extended data length mode is used to encode data beyond the capacity of a single Code 16K symbol. In the extended data

44

2D Barcode VCL Components User Manual

length mode, up to 107 Code 16K 16-rows symbols may be arranged to convey more data (up to 8025 ASCII characters, or 16050
numeric digits). If a symbol is part of these extended data length mode symbols, this shall be indicated by extended data length
mode block in barcode text. The escape sequence "m[<Index>, <Amount>]" is used to place the extended data length mode block
to the barcode text:

¢ Index: The position index of the symbol within the set of Code 16K symbols in the extended data length mode. It's an integer
between 1 and 107 (including the boundaries) in string format.

e Amount: The total amount of the symbol within the set of Code 16K symbols in the extended data length mode. It's an integer
between 2 and 107 (including the boundaries) in string format.

The AllowEscape property should be set to true in order to place the extended data length mode block. The extended data length
mode block may be placed only once in the barcode text. Also, it shall be placed at beginning of the barcode text. The OninvalidChar
or OninvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur if the extended data length mode block be placed
more than once, or it isn't placed at beginning of the barcode text. The following is an example of extended data length mode
symbol:

\m[2,12]ABCDEFG1234567

The InitialMode property should be set to emAuto or emMode_Extended if an extended data length mode block is placed in the
barcode text, otherwise the OninvalidChar or OninvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.
Conversely, the extended data length mode block is required if the InitialMode property is set to emMode_Extended, otherwise the
OnlnvalidChar or OninvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur too.

The extended data length mode block shouldn't be placed together with message append block in the barcode text, otherwise the
OnlnvalidChar or OninvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur. See also the "Message append
(structured append)" section below.

If a symbol is encoded in extended data length mode, the number of stacked rows will be changed to 16 automatically.

Note, if only two symbols are to be logically linked in extended data length mode, they may be arranged horizontally or vertically
adjacent to each other. If more symbols are to be logically linked, they shall be arranged in a single vertical stack. The maximum
number of symbols should be specified for the application.

Message append (structured append)

The message append is a method similar to the extended data length mode to encode data beyond the capacity of a single Code
16K symbol. Up to 9 Code 16K symbols may be appended in a structured format to convey more data. It should only be used in
closed systems. If a symbol is part of a message append this shall be indicated by a message append block in barcode text. The
escape sequence "\s[<Index>, <Amount>]" is used to place the message append block to the barcode text:

¢ Index: The position index of the symbol within the set of Code 16K symbols in the message append format. It's an integer
between 1 and 9 (including the boundaries) in string format.

e Amount: The total amount of the symbol within the set of Code 16K symbols in the message append format. It's an integer
between 2 and 9 (including the boundaries) in string format.

The AllowEscape property should be set to true in order to place the message append block. The message append block may be
placed only once in the barcode text. Also, it shall be placed at beginning of the barcode text. The OninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur if the message append block be placed more than
once oritisn't placed at beginning of the barcode text. The following is an example of message append symbol:

\s[2,5]ABCDEFGHIJKLMN012345

The message block shouldn't be placed together with extended data length mode block in the barcode text, otherwise the
OnlnvalidChar or OninvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur. See also the "Extended data length
mode" section above.

The message append block shouldn't be placed in the barcode text if the InitialMode property is set to emMode_ Extended,
otherwise the OninvalidChar or OninvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

45

2D Barcode VCL Components User Manual

The symbols in a message append should not be arranged horizontally, but only in a single vertical stack.

Properties:
* |Image
e Barcode
e Data (¥)
* Module
e BarColor
e SpaceColor
e Orientation
e Stretch
e LeftMargin
e TopMargin
* BarcodeWidth
e BarcodeHeight
e ShowQuietZone
e |eadingQuietZone
e TopQuietZone
e TrailingQuietZone
¢ BottomQuietZone
* Locked
e MinRows
e MaxRows

e RowHeight

e SeparatorBarHeight

e |nitialMode

e AllowEscape

e CurrentRows (Read only)

e CurrentMode (Read only)

Methods:

L]

L]

L]

Create

Destroy

Assign

Clear

Draw

Size
CopyToClipboard
DrawTo
DrawToSize

Print

PrintSize

Events:

L]

L]

L]

OnChange

OnEncode
OnlinvalidChar
OninvalidLength
OnlnvalidDataChar (*)
OnlnvalidDataLength (*)

OnDrawBarcode

(*): The Data property, OninvalidDataLength and OnlinvalidDataChar events are available only for the Delphi/C++ Builder 2009 or

later.

4.1.7 TBarcode2D_CompactMatrix

The component is used to create the Compact Matrix 2D barcode symbols. It's defined in the pCompactMatrix unit.

Compact Matrix is a variable-sized two-dimensional matrix symbology. The code graph adopts sprocket
hole positioning and graphic sectioning techniques to perform fast and accurate identification and handling
of 2D barcode graph by analyzing the information of sprocket position and graphic section.

Compact Matrix

Compact Matrix can encode 7-bit ASCII, numeric, and binary data, in addition to any combination of data

46

2D Barcode VCL Components User Manual

types in the same symbol, particularly effective with Chinese characters.
Compact Matrix was invented by Syscan Technology Co., Ltd.
Symbol sizes

There are 32 vertical sizes of Compact Matrix symbol, referred to as version 1 to 32, in increasing order of symbol height and data
capacity. In horizontal orientation, each Compact Matrix symbol consists of an array of segments with a minimum of 1 segment
(maximum 32 segments).

You can use the MinVersion and the MaxVersion properties to specifiy the minimum and maximum version for a Compact Matrix
symbol. And use the MinSegments and the MaxSegments properties to specifiy the minimum and maximum number of segments for
it. In other words, the MinVersion and MinSegments properties specify a minimum symbol size, and the MaxVersion and
MaxSegments properties specify a maximum symbol size. According to the priority order specified by the StretchOrder property, the
first symbol size that accommodates the barcode text will be automatically selected between the minimum symbol size and the
maximum symbol size.

You can use the CurrentVersion property to get the factual version. And use the CurrentSegments property to get the factual number
of segments.

If the barcode text does not fill the maximum data capacity of the Compact Matrix symbol, remaining data capacity of the symbol will
be filled by using pad bits (the ECCLevelUpgrade property is set to false), or will be used to upgrade the error correction code level
(the ECCLevelUpgrade property is set to true). If the barcode text is so long that it cannot be encoded using the maximum symbol
size specified by the MaxVersion and the MaxSegments properties, an OninvalidLength or OninvalidDataLength (only for
Delphi/C++ Builder 2009 or later) event will occur.

Error correction code (ECC)
There are eight user-selectable levels of error correction, from 1 to 8 respectively in increasing order of recovery capacity.

You can use the ECCLevel property to specify the error correction code level for a Compact Matrix symbol. It can be one of values
from 1 to 8, corresponding to the ECC levels from 1 to 8.

These ECC levels are listed in following table:

Error correction code level Percentage of total capacity for ECC data
1 8%
16%
24%
32%
40%
48%
56%
64%

O |N|loO(lO|M|lW[N

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by current symbol
size will be used for creating more robust symbols. Note, the new level is always no lower than the level specified by the ECCLevel
property, and the symbol size will not be increased, it may be determined depending on the length of barcode text, and the error
correction code level specified by the ECCLevel property (see also the "Symbol sizes" section above). In other words, only the
remaining capacity in current symbol size will be used to upgrade the error correction code level. The property CurrentECCLevel can
be used to get the factual error correction code level.

Quiet zones

The minimum quiet zone is equal to 6 modules on all four sides. So the minimum values ofLeadingQuietZone, TrailingQuietZone,
TopQuietZone, and BottomQuietZone properties are equal to 6.

Character set

e All 7-bit ASClIl values can be encoded.

47

2D Barcode VCL Components User Manual

e 8-bit binary data can be encoded.
e GB 18030 Chinese characters can be encoded.
e Five non-data characters can be encoded:

o AIM FNCH1 It identifies symbols formatted in accordance with specific industry or application specifications previously
agreed with AIM International. It is immediately followed by an application indicator assigned to identify the specification
concerned by AIM International. For this purpose, it shall only be used once in a symbol and shall be placed at beginning
of the barcode. The escape sequence "\0" can be used to placed the FNC1 character to barcode text.

o GS1 FNCH1 It identifies symbols encoding data formatted according to the GS1 Application Identifiers standard. For
this purpose, it shall only be used once in a symbol and shall be placed at beginning of the barcode text. The escape
sequence "\1" can be used to placed the GS1 FNC1 character to barcode text.

o FNC2: The FNC2 is used to implement structured append function in order to handle larger messages than are
practical in a single symbol. The escape sequence "\2[<File_Id>, <Amount>, <Index>! is used to place the FNC2
character and other structured append information (collectively referred to as structured append block) to barcode text.
See also the "Escape sequences" and "Structured append" sections below.

o FNC3: The FNC3 is used to indicates that the symbol encodes a message used to program the reader system. The
escape sequence "\3" can be used to placed the FNC3 character to barcode text. See also the "Escape sequences”
section below.

o ECI: ECI indicator blocks is for the standardized encoding of message interpretation information. The escape

sequence "\e[<ECI Number>]" can be used to place the ECI indicator block to barcode text. See also the "Extended
Channel Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place these non-data characters.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert them to the
barcode text:

¢ \\: Insert a backslash to barcode text.

e \0: Insert an AIM FNC1 character to barcode text in order to encode AIM structural data similar to GS1. It shall be placed at
beginning of the barcode text and it shall not be used with GS1 FNC1 (11") or FNC3 (\3"). If it is used together with the
structured append block (FNC2, "\2"), it shall be placed on front of the structured append block ("\2"). See also the "Structured
append"” section below.

e \1: Insert a GS1 FNC1 character to barcode text in order to encode GS1 structural data. It shall be placed at beginning of the
barcode text and it shall not be used with AIM FNC1 (10") or FNC3 (\3"). If it is used together with the structured append
block ("\2"), it shall be placed on front of the structured append block (FNC2, "\2"). See also the "Structured append” section
below.

¢ \2[<File_ld>, <Amount>, <Index>] Insert a structured append block (FNC2 and other structured append information) to the
barcode text in order to create the symbol in a structured append. See also the "Structured append” section below.

e \3: Insert a FNC3 character to barcode text, indicates that the symbol encodes a message used to program the reader
system. It shall be placed at beginning of the barcode text and it shall not be used with AIM FNC1 (10") or GS1 FNC1 ({1"). If
it is used together with the structured append block (FNC2, "\2"), it shall be placed on front of the structured append block
(FNC2, "\2"). See also the "Structured append” section below.

¢ \e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation (ECI)"
section below.

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that of the
default character set.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after

48

2D Barcode VCL Components User Manual

decoding. The ECl is identified by an integer (up to 6 digits) which is encoded in the Compact Matrix symbol by the ECI indicator
block. The escape sequence "\e[<ECI|_Number>]" is used to place the EClindicator block to the barcode text:

e ECI_Number: The ECInumber, it's an integer between 0 and 811799 (including the boundaries), the leading zero is optional.

In a single symbol or structured append set of Compact Matrix symbols, if the AIM FNC1 (0"), GS1 FNC1 ({1"), FNC2 (structured
append block, "\2"), and FNC3 ('\3") are used, ECI indicator blocks may be placed anywhere behind of them, otherwise, they may
be placed anywhere in the barcode text. For example:

ABC\e[123]DEFabc\e[000003]def

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until the end
of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI| may straddle two or more
symbols.

Structured append

In order to handle larger messages than are practical in a single symbol, a data message can be distributed across several
Compact Matrix symbols. Up to 16 Compact Matrix symbols may be appended in a structured format to convey more data. If a
symbol is part of a structured append this shall be indicated by a structured append block in barcode text. The escape sequence
"\2[<File_ld>, <Amount>, <Index>]" is used to place the structured append block to the barcode text:

o File_Id: The file identification. It's an integer between 0 and 255 (including the boundaries) in string format. The purpose of the
file identification is to increase the probability that only logically linked symbols are processed as part of the same message.

e Amount: The total amount of the symbol within the set of Compact Matrix symbols in the structured append format. It's an
integer between 1 and 16 (including the boundaries) in string format.

¢ Index: The position index of the symbol within the set of Compact Matrix symbols in the structured append format. It's an
integer between 1 and 16 (including the boundaries) in string format.

The AllowEscape property should be set to true in order to place the structured append block. The structured append block may only
be placed once in the barcode text. If the structured append block is used together with AIM FNC1 (10"), GS1 FNC1 (11") or FNC3
("\3"), the AIM FNC1 (10"), GS1 FNC1 (11") or FNC3 (\3") shall be placed at beginning of the barcode text, then the structured
append block. Otherwise, the structured append block shall be placed at beginning of the barcode text. The OninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur if the structured append block be placed more than
once, or it isn't placed at beginning of the barcode text or behind of the AIM FNC1 (10"), GS1 FNC1 (11") or FNC3 (\3"). The
following is examples of structured append:

\2[79, 5, 2]ABCDEFGabcdefgl234567890...

\0\2[99, 6, 1]ASDFGHJKL098765...

49

2D Barcode VCL Components User Manual

Properties: Methods:
e Image e Create
e Barcode e Destroy
e Data (¥) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight
Events:

e ShowQuietZone

e OnChange
e | eadingQuietZone

e OnEncode

TopQuietZone
TrailingQuietZone
BottomQuietZone
Locked
AllowEscape
MinVersion
MaxVersion
MinSegments
MaxSegments
StretchOrder
ECCLevel
ECCLevelUpgrade
StartWidth
StopWidth

Placement

L]

OnlinvalidChar
OnlnvalidLength
OnlnvalidDataChar (*)
OnlinvalidDataLength (*)

OnDrawBarcode

e CurrentVersion (Read only)
e CurrentSegments (Read only)

e CurrentECCLevel (Read only)

(*): The Data property, OninvalidDataLength and OnlinvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.8 TBarcode2D_DataMatrix

The component is used to create the Data Matrix (ECC 000 - 140) 2D barcode symbols. It's defined in the pDataMatrix unit.

50

2D Barcode VCL Components User Manual

Data Matrix code is a two-dimensional matrix barcode symbology consisting of black and white "cells" or modules arranged in either
a square or rectangular pattern. The information to be encoded can be text or raw data. Usual data size is from a few bytes up to 2
kilobytes. The length of the encoded data depends on the symbol dimension used. Error correction codes are added to increase
symbol strength: even if they are partially damaged, they can still be read.

Data Matrix was invented by International Data Matrix, Inc. (ID Matrix) which was merged into RVSI/Acuity CiMatrix, who was
acquired by Siemens AG in October, 2005 and Microscan Systems in September 2008.

There are 2 types of Data Matrix symbology, namely ECC 000 - 140 and ECC 200. The component can be used to
generate the ECC 000 - 140 symbols. It is the conventional coding for error correction that was used in the initial
installations of Data Matrix systems. It offers five levels of error correction using convolutional code error correction.
ECC 000 - 140 symbols have an odd number of rows and an odd number of columns. Symbols are square with sizes

from 9 * 9 to 49 * 49 (modules) not including quiet zones. These symbols can be recognized by the upper right corner [DE&“‘DE’D?'{'.;E,

module being dark.

ECC 000 - 140 should only be used in closed applications where a single party controls both the production and reading of the
symbols and is responsible for overall system performance.

If you want to generate the Data Matrix ECC 200 symbols, please use another componenfiBarcode2D_DataMatrixECC200 in this
components package.

Error correction code (ECC)

Data Matrix (ECC 000 - 140) symbols offer five levels of error correction, referred to as ECC 000, ECC 050, ECC 080, ECC 10(
and ECC 140 respectively in increasing order of recovery capacity. They are listed in following table:

Error correction code level Maximum % correctable damage % increase in used bits from ECC 000
ECC 000 none none
ECC 050 2.8 33
ECC 080 55 50
ECC 100 12.6 100
ECC 140 25 300

In an application, it is important to understand that these error correction levels result in the generation of a proportional increase in
the number of bits in the message (and hence increase in the size of the symbol), and offer different levels of error recovery.

You can use the ECCLevel property to specify the error correction code level for a Data Matrix (ECC 000 - 140) symbol. It can be
one of these values: dmMECC000, dmECC050, dmECC080, dmMECC100, and dmECC140 (they are defined in the pDataMatrix
unit), corresponding to the ECC levels ECC 000, ECC 050, ECC 080, ECC 100, and ECC 140.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by current symbol
size will be used for creating more robust symbols. Note, the new level is always no lower than the level specified by the ECCLevel
property, and the symbol size will not be increased, it may be determined depending on the length of barcode text, and the error
correction code level specified by the ECCLevel property (see also the "Symbol sizes" section below). In other words, only the
remaining capacity in current symbol size will be used to upgrade the error correction code level. The property CurrentECCLevel can
be used to get the factual error correction code level.

Character set
All 8-bit values can be encoded. The default interpretation shall be:

e Forvalues 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII); Note this version consists of the GC
set of ISO/IEC 646 and the CO set of ISO/IEC 6429 with values 28 to 31 modified to FS, GS, RS and US respectively).

e For values 128 - 255, in accordance with ISO/IEC 8859-1 (These are referred to as extended ASCII).
Note, the character set isn't different based on the encoding mode. See also the "Encoding modes" section below.

Encoding modes

51

2D Barcode VCL Components User Manual

There are six encoding modes of Data Matrix (ECC 000 - 140) symbols, they are shown in following list, in decreasing order of
encoding density:

L]

Numeric (Base 11). The encoding mode encodes 10 numeric characters 0 to 9, and the space character. The encoding
density is 3.5 bits per data character. The encoding mode has highest encoding density.

Alpha (Base 27) The encoding mode encodes 26 upper case letters A to Z, and the space character. The encoding density
is 4.8 bits per data character.

Alphanumeric (Base 37} The encoding mode encodes 26 upper case letters A to Z, 10 numeric characters 0 to 9, and the
space character. The encoding density is 5.25 bits per data character.

Punctuation (Base 41) The encoding mode encodes 26 upper case letters A to Z, 10 numeric characters 0 to 9, and the
space, point(.), hyphen(-), comma(,) and solidus(/) characters. The encoding density is 5.5 bits per data character.

ASCII: The encoding mode encodes all 128 ASCII characters from ISO/IEC 646. The encoding density is 7 bits per data

character.

Binary: The encoding mode encodes all 256 8-bit bytes. It shall be used for closed applications, where the data interpretation
shall be determined by the user. The encoding density is 8 bits per byte. The encoding mode has lowest encoding density.

You can use the EncodeMode property to specify the encoding mode for a Data Matrix (ECC 000 - 140) symbol. It can be one of
these value: emNumeric, emAlpha, emPunctuation, emAlphanumeric, emASCIl, and emBinary, corresponding to the encoding
modes Numberic (Base 11), Alpha (Base 27), Alphanumeric (Base 37), Punctuation (Base 41), ASCII, and Binary. Also, it can be
set to emAuto, in this case, the encoding mode will be selected automatically from the list shown above, depending on the barcode
text, in other words, the barcode text to be encoded will be analysed, and an appropriates lowest level (highest encoding density)
encoding mode will be selected, in order to minimize the symbol size. The property CurrentEncodeMode can be used to get the
factual encoding mode. These property values are defined in the pDataMatrix unit.

Symbol sizes

ECC 000 - 140 symbols have an odd number of rows and an odd number of columns. Symbols are square with sizes from 9 * 9 to
49 * 49 (modules) square not including quiet zones. These symbol sizes (excluding quiet zones) and their maximum data capacities
are listed in following table:

52

2D Barcode VCL Components User Manual

. Symbol sizes Maximum data capacities (bits)
Symbol size values
(modules) ECC 000 ECC 050 ECC 080 ECC 100 ECC 140

dmSize_09_09 9+*9 12 - - - -

dmSize_11_11 11*11 44 6 - - -

dmSize_13_13 13*13 84 36 18 7 -

dmSize_15_15 15*15 132 72 50 31 -

dmSize_17_17 17 *17 188 114 86 59 9

dmSize_19_19 19*19 252 162 130 91 25
dmSize_21_21 21*21 324 216 178 127 43
dmSize_23_23 23*23 404 276 230 167 63
dmSize_25_25 25*25 492 342 290 21 85
dmSize_27_27 27 *27 588 414 354 259 109
dmSize_29 29 29*29 692 492 422 311 135
dmSize_31_31 31*31 804 576 498 367 163
dmSize_33_33 33*33 924 666 578 427 193
dmSize_35_35 35*35 1052 762 662 491 225
dmSize_37_37 37*37 1188 864 754 559 259
dmSize_39_39 39*39 1332 972 850 631 295
dmSize_41_41 41*41 1484 1086 950 707 333
dmSize_43_43 43 *43 1644 1206 1058 787 373
dmSize_45_45 45*45 1812 1332 1170 871 415
dmSize_47_47 47 * 47 1988 1464 1286 959 459
dmSize_49 49 49*49 2172 1602 1410 1051 505

The maximum number of characters in each encoding mode can be calculated by using the Maximum data capacities (bits). For
example, the maximum data capacities are 114 bits if the symbol size is 17 * 17 and the error correction code level is ECC 050.
The encoding density is 4.8 bits per data character in Alpha (Base 27) encoding mode, so the maximum number of characters is 23
(114 /4.8 =23.75) in the Alpha (Base 27) encoding mode. You can find the encoding density in "Encoding modes" section above.

You can use the MinSize and the MaxSize properties to specify the minimum and maximum sizes for a Data Matrix (ECC 000 - 140)
symbol. They can be one of values from dmSize_09 09 to dmSize_49_49 (defined in the pDataMatrix unit), corresponding to every
symbol size shown above. The smallest symbol size that accommodates the barcode text will be automatically selected between
minimum and maximum symbol sizes.

If the barcode text does not fill the maximum data capacity of the Data Matrix (ECC 000 - 140) symbol, remaining data capacity of
the symbol will be filled by using pad bits (the ECCLevelUpgrade property is set to false), or will be used to upgrade the error

correction code level (the ECCLevelUpgrade property is set to true). If the barcode text is so long that it cannot be encoded using

the maximum symbol size specified by the MaxSize property, an OninvalidLength or OninvalidDataLength (only for Delphi/C++
Builder 2009 or later) event will occur. The CurrentSize property can be used to get the factual symbol size.

Quiet zones

The minimum quiet zone is equal to 1 module on all four sides. So the minimum values ofLeadingQuietZone, TrailingQuietZone,
TopQuietZone, and BottomQuietZone properties are equal to 1. For applications with moderate to excessive reflected noise in
close proximity to the symbol, a quiet zone of 2 modules to 4 modules is recommended.

53

2D Barcode VCL Components User Manual

Properties: Methods:
e Image e Create
e Barcode e Destroy
e Data (¥) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight
Events:

e ShowQuietZone

e OnChange
e | eadingQuietZone

e OnEncode

e TopQuietZone
P e OnlnvalidChar
e TrailingQuietZone « OninvalidLength

e OninvalidDataChar (*)

e BottomQuietZone

e |ocked
e OninvalidDataLength (*)
* Inversed
e OnDrawBarcode
e MinSize
e MaxSize

e EncodeMode

e ECCLevel

e ECCLevelUpgrade

e CurrentSize (Read only)

e CurrentECCLevel (Read only)

e CurrentEncodeMode (Read only)

(*): The Data property, OninvalidDatalLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.9 TBarcode2D_DataMatrixECC200

The component is used to create the Data Matrix (ECC 200) 2D barcode symbols. It's defined in the pDataMatrixEcc200 unit.

Data Matrix code is a two-dimensional matrix barcode symbology consisting of black and white "cells" or modules arranged in either
a square or rectangular pattern. The information to be encoded can be text or raw data. Usual data size is from a few bytes up to 2
kilobytes. The length of the encoded data depends on the symbol dimension used. Error correction codes are added to increase
symbol strength: even if they are partially damaged, they can still be read.

Data Matrix was invented by International Data Matrix, Inc. (ID Matrix) which was merged into RV SI/Acuity CiMatrix, who were

2D Barcode VCL Components User Manual

acquired by Siemens AG in October, 2005 and Microscan Systems in September 2008.

There are 2 types of Data Matrix symbology, namely ECC 000 - 140 and ECC 200. The component can be used to pFibrsrfipals
generate the ECC 000 - 140 symbols. It is the newest version of Data Matrix and supports advanced encoding error =
checking and correction algorithms. It allows the routine reconstruction of the entire encoded data string when the %%
symbol has sustained 30% damage, assuming the matrix can still be accurately located. So it's recommended for ke bk H
new application or open systems. D‘?‘:_t&w

ECC 200 symbols have an even number of rows and an even number of columns. Some symbols are square with sizes from 10 * 10
to 144 * 144 not including quiet zones. Some symbols are rectangular with sizes from 8 * 18 to 16 * 48 not including quiet zones. All
ECC 200 symbols can be recognised by the upper right corner module being light.

If you want to generate the Data Matrix ECC (000 - 140) symbols, please use another componenfTBarcode2D_DataMatrix in this
components package.

Shapes
There are two shapes of Data Matrix (ECC 200) symbols, square and rectangle, as described in following list:

e Square: Indicates to generate the square symbols.

e

¢ Rectangle: Indicates to generate the rectangle symbols.
You can use the Shape property to specify which shape of symbol will be selected to generate the barcode symbol. It can be one of

values dsSquare and dsRectangle, corresponding to the shapes square and rectangle. These values are defined in the
pDataMatrixEcc200 unit.

Symbol sizes

Data Matrix (ECC 200) symbols have an even number of rows and an even number of columns. The sizes of the square symbols are
from 10 * 10 to 144 * 144 (modules) not including quiet zones. The sizes of the rectangle symbols are from 8 * 18 to 16 * 48
(modules) not including quiet zone.

e The sizes of square symbols (excluding quiet zones) and their maximum data capacities are listed in following table:

55

2D Barcode VCL Components User Manual

Symbol size values

Symbol sizes

Maximum data capacities

e Th

(modules) Numeric Alphanumeric Byte
dmSize_10_10 10*10 6 3 1
dmSize_12_12 12*12 10 6 3
dmSize_14_14 14*14 16 10 6
dmSize_16_16 16 * 16 24 16 10
dmSize_18_18 18*18 36 25 16
dmSize_20_20 20*20 44 31 20
dmSize_22 22 22*22 60 43 28
dmSize_24_24 24 %24 72 52 34
dmSize_26_26 26 * 26 88 64 42
dmSize_32_32 32*32 124 91 60
dmSize_36_36 36 * 36 172 127 84
dmSize_40_40 40*40 228 169 112
dmSize_44_44 44 * 44 288 214 142
dmSize_48 48 48 * 48 348 259 172
dmSize_52_52 52 *52 408 304 202
dmSize_64_64 64 * 64 560 418 277
dmSize_72_72 72*72 736 550 365
dmSize_80_80 80 *80 912 682 453
dmSize_88_88 88 *88 1152 862 573
dmSize_96_96 96 * 96 1392 1042 693
dmSize_104_104 104 * 104 1632 1222 813
dmSize_120_120 120 * 120 2100 1573 1047
dmSize_132_132 132*132 2608 1954 1301
dmSize_144_144 144 * 144 3116 2335 1555

e sizes of rectangle symbols (excluding quiet zones) and their maximum data capacities are listed in following table:

Symbol size values

Symbol sizes

Maximum data capacities

(modules) Numeric Alphanumeric Byte
dmSize_8_18 8*18 10 6 3
dmSize_8_32 8*32 20 13 8
dmSize_12_26 12*26 32 22 14
dmSize_12_36 12*36 44 31 20
dmSize_16_36 16 * 36 64 46 30
dmSize_16_48 16 *48 98 72 47

You can use the MinSize and the MaxSize properties to specifiy the minimum and maximum sizes for a Data Matrix (ECC 200)
symbol. They can be one of values fromdmSize_10_10 to dmSize_16_48 (they are defined in the pDataMatrixEcc200 unit),
corresponding to every symbol size shown above. The smallest symbol size that accommodates the barcode text will be
automatically selected between minimum and maximum symbol sizes.

If the barcode text does not fill the maximum data capacity of the Data Matrix (ECC 200) symbol, remaining data capacity of the
symbol will be filled by using PAD characters. If the barcode text is so long that it cannot be encoded using the maximum symbol
size specified by the MaxSize property, an OninvalidLength or OninvalidDataLength (only for Delphi/C++ Builder 2009 or later) event

2D Barcode VCL Components User Manual

will occur. The CurrentSize property can be used to get the factual symbol size.
Quiet zones

The minimum quiet zone is equal to 1 module on all four sides. So the minimum values ofLeadingQuietZone, TrailingQuietZone,
TopQuietZone, and BottomQuietZone properties are equal to 1. For applications with moderate to excessive reflected noise in
close proximity to the symbol, a quiet zone of 2 modules to 4 modules is recommended.

Error checking and correcting (ECC)

Data Matrix (ECC 200) symbols are fixed at a repair level of about 25% damage and overhead ranges from 60% for a small number
of characters downward to 26% for a large number of characters encoded.

Character set
e All 8-bit values can be encoded. The default interpretation shall be:

o For values 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII); Note this version consists o
the GO set of ISO/IEC 646 and the CO set of ISO/IEC 6429 with values 28 to 31 modified to FS, GS, RS and U
respectively).

o For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).
This interpretation corresponds to EC1000003.

e Two non-data characters can be encoded, FNC1 for compatibility with some existing applications and EClindicator blocks for
the standardized encoding of message interpretation information.

o FNC1: The FNC1 character following an application standard agreed with AIM Intemnational, identifies a symbol which
conforms to a specific industry standard. FNC 1 shall be used as defined inthe EAN.UCC General Specifications in the
first position. The FNC1 character may also be used as a field separator, in which case it will be represented in the
transmitted message as GS character (ASCII value 29). The escape sequence \f' can be used to placed the FNC1
character to barcode text.

o ECI: The escape sequence "\e[<ECI Number>]" can be used to place the EC| indicator block to barcode text. See also
the "Extended Channel Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place the FNC1 characters or the EClindicator blocks.
Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert them to the
barcode text:

* \\: Insert a backslash to barcode text.

¢ \5: Insert a 05 macro to barcode text. It's used to abbreviate the industry specific header 'T)>{RS}05{GS}" and trailer "{RS}
{EOT}", in order to reduce the size of symbol. It must be placed at beginning of the barcode text and it shall not be used in
conjunction with structured append.

e \6: Insert a 06 macro to barcode text. It's used to abbreviate the industry specific header 'T)>{RS}06{GS}" and trailer "{RS}
{EOT}", in order to reduce the size of symbol. It must be placed at beginning of the barcode text and it shall not be used in
conjunction with structured append.

¢ \f: Insert a FNC1 character to barcode text. See also the "Character set" section above.

¢ \e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation (ECI)"
section below.

¢ \s[<Index>, <Amount>, <File_Id>] Insert a structured append block to the barcode text in order to create the symbol in a
structured append. See also the "Structured append” section below.

¢ \r: Indicates that the symbol encodes a message used to program the reader system. It shall be placed at beginning of the
barcode text and it shall not be used with structured append.

57

2D Barcode VCL Components User Manual

Note, the "{RS}" is ASCII character RS (ASCII value 30), the{GS}" is ASCII character GS (ASCII value 29), and the{EOT}" is
ASCIl character EOT (ASCll value 4).

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that of the
default character set. Four broad types of interpretations are supported in Data Matrix (ECC 200):

e International character sets (or code pages).
e General purpose interpretations such as encryption and compaction.
e User defined interpretations for closed systems.

e Control information for structured append in unbuffered mode.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after
decoding. The ECI is identified by an integer (up to 6 digits) which is encoded in the Data Matrix (ECC 200) symbol by the ECI
indicator block. The escape sequence "\e[<ECI_Number>]" is used to place the EClindicator block to the barcode text:

e ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero is optional.

ECI indicator blocks may be placed anywhere in the barcode text in a single or structured append set of Data Matrix (ECC 200)
symbols. For example:

ABC\e[123]DEFabc\e[000003]def

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until the end
of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI| may straddle two or more
symbols.

Structured append

In order to handle larger messages than are practical in a single symbol, a data message can be distributed across several Data
Matrix (ECC 200) symbols. Up to 16 Data Matrix (ECC 200) symbols may be appended in a structured format to convey more data.
If a symbol is part of a structured append this shall be indicated by a structured append block in barcode text. The escape sequence
"\s[<Index>, <Amount>, <File_Id>]" is used to place the structured append block to the barcode text:

¢ Index: The position index of the symbol within the set of Data Matrix (ECC 200) symbols in the structured append format. It's
aninteger between 1 and 16 (including the boundaries) in string format.

e Amount: The total amount of the symbol within the set of Data Matrix (ECC 200) symbols in the structured append format. It's
aninteger between 2 and 16 (including the boundaries) in string format.

o File_Id: The file identification. It's an integer between 1 and 64516 (including the boundaries) in string format. The purpose of
the file identification is to increase the probability that only logically linked symbols are processed as part of the same
message. Also the field can be expressed as two integers between 1 and 254 (including the boundaries), separated with a
comma.

The AllowEscape property should be set to true in order to place the structured append block. The structured append block may only
be placed once in the barcode text. Also, it shall be placed at beginning of the barcode text. The OninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur if the structured append block be placed more than
once, oritisn't placed at beginning of the barcode text. The following is the examples of structured append:

\s[2, 5, 25431]ABCDEFGabcdefgl234567890

\s[2, 5, 101, 31]ABCDEFGabcdefgl234567890

58

2D Barcode VCL Components User Manual

Properties: Methods:
e Image e Create
e Barcode e Destroy
e Data (¥) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight
Events:

e ShowQuietZone

e OnChange
e | eadingQuietZone

e OnEncode

e TopQuietZone
P e OnlnvalidChar
e TrailingQuietZone « OninvalidLength

e OninvalidDataChar (*)

e BottomQuietZone

e Locked e OnlnvalidDataLength (*)
* Inversed e OnDrawBarcode

e MinSize

* MaxSize

e Shape

e CurrentSize (Read only)

(*): The Data property, OninvalidDataLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.10 TBarcode2D_GridMatrix

The component is used to create the Grid Matrix 2D barcode symbols. It's defined in the pGridMatrix unit.

Grid Matrix is a square, variable-sized, two-dimensional matrix symbology with unique dark- and light-framed
"macromodules” that create a grid design that provides a robust finder pattern. The unique finder pattern ensures that
readers can locate and orient the symbol even with significant symbol damage.

Grid Matrix can encode 7-bit ASCII, numeric, and binary data, in addition to any combination of data types in the same Grid Matrix
symbol, particularly effective with Chinese characters.

Grid Matrix was invented by Syscan Technology Co., Ltd.
Symbol sizes

There are thirteen sizes of Grid Matrix symbol, referred to as version 1 to 13, in increasing order of size and data capacity. You can

59

2D Barcode VCL Components User Manual

use the MinVersion and the MaxVersion properties to specifiy the minimum and maximum sizes for a Grid Matrix symbol. They can
be one of values from 1 to 13 (defined in the pGridMatrix unit), corresponding to the versions 1 to 13. The smallest symbol size that
accommodates the barcode text will be automatically selected between minimum and maximum symbol sizes. The CurrentVersion
property can be used to get the factual symbol size.

The symbol sizes and the maximum data capacity of each version are listed in following table:

Version Symbol sizes Maximum data capacities (bits)
(modules) ECC Level 1 ECC Level 2 ECC Level 3 ECC Level 4 ECC Level 5

1 18*18 - 105 91 77 63

2 30*30 315 280 245 210 175
3 42*42 623 553 483 413 343
4 54 * 54 1022 910 798 686 567
5 66 * 66 1526 1358 1190 1022 847
6 7878 2135 1897 1659 1421 1183
7 90 * 90 2835 2520 2205 1890 1575
8 102 * 102 3647 3241 2835 2429 2023
9 114* 114 4550 4046 3542 3038 2527
10 126 * 126 5558 4942 4326 3710 3087
11 138 * 138 6671 5929 5187 4445 3703
12 150 * 150 7875 7000 6125 5250 4375
13 162 * 162 9191 8169 7147 6125 5103

If the barcode text does not fill the maximum data capacity of the Grid Matrix symbol, remaining data capacity of the symbol will be
filled by using pad bits (the ECCLevelUpgrade property is set to false), or will be used to upgrade the error correction code level (the
ECClLevelUpgrade property is set to true). If the barcode text is so long that it cannot be encoded using the maximum symbol size
specified by the MaxVersion property, an OninvalidLength or OninvalidDataLength (only for Delphi/C++ Builder 2009 or later) event
will occur.

Error correction code (ECC)
There are five user-selectable levels of error correction, from 1 to 5 respectively in increasing order of recovery capacity.

You can use the ECCLevel property to specify the error correction code level for a Grid Matrix symbol. It can be one of these values:
elLevel_1, elLevel_2, elLevel_3, elLevel 4, and elLevel 5 (they are defined in the pGridMatrix unit), corresponding to the ECC
levels from 1 to 5.

These ECC levels are listed in following table:

Value of ECCLevel property Error correction code level Percentage of total capacity for ECC data
elLevel 1 1 10%
elLevel 2 2 20%
elLevel_3 3 30%
elLevel_4 4 40%
elLevel 5 5 50%

Note, the ECC level 1 is inapplicable to the version 1.

Also, you can set the ECCLevel property to elLevel_Recommend or elLevel_LowestRecommend. For each symbol version, the
denotative ECC levels are listed in following table:

60

2D Barcode VCL Components User Manual

Version Denotative ECC level
ECCLevel = elLevel Recommend ECCLevel =elLevel LowestRecommend
5 4
4 2
4 1
4-13 3 1

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by current symbol
size will be used for creating more robust symbols. Note, the new level is always no lower than the level specified by the ECCLevel
property, and the symbol size will not be increased, it may be determined depending on the length of barcode text, and the error
correction code level specified by the ECCLevel property (see also the "Symbol sizes" section above). In other words, only the
remaining capacity in current symbol size will be used to upgrade the error correction code level. The property CurrentECCLevel can
be used to get the factual error correction code level.

Quiet zones

The minimum quiet zone is equal to 6 modules on all four sides. So the minimum values ofLeadingQuietZone, TrailingQuietZone,
TopQuietZone, and BottomQuietZone properties are equal to 6.

Character set
e All 7-bit ASClIl values can be encoded.
e 8-bit binary data can be encoded.
e GB 18030 Chinese characters can be encoded.
¢ Five non-data characters can be encoded:

o AIM FNCH1 It identifies symbols formatted in accordance with specific industry or application specifications previously
agreed with AIM International. It is immediately followed by an application indicator assigned to identify the specification
concerned by AIM International. For this purpose, it shall only be used once in a symbol and shall be placed at beginning
of the barcode. The escape sequence "\0" can be used to placed the FNC1 character to barcode text.

o GS1 FNCH1 It identifies symbols encoding data formatted according to the GS1 Application Identifiers standard. For
this purpose, it shall only be used once in a symbol and shall be placed at beginning of the barcode text. The escape
sequence "\1" can be used to placed the GS1 FNC1 character to barcode text.

o FNC2: The FNC2 is used to implement structured append function in order to handle larger messages than are
practical in a single symbol. The escape sequence "\2[<File_Id>, <Amount>, <Index>! is used to place the FNC2
character and other structured append information (collectively referred to as structured append block) to barcode text.
See also the "Escape sequences" and "Structured append" sections below.

o FNC3: The FNC3 is used to indicates that the symbol encodes a message used to program the reader system. The
escape sequence "\3" can be used to placed the FNC3 character to barcode text. See also the "Escape sequences"
section below.

o ECI: ECI indicator blocks is for the standardized encoding of message interpretation information. The escape
sequence "\e[<ECI|_Number>]" can be used to place the ECI indicator block to barcode text. See also the "Extended
Channel Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place these non-data characters.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert them to the
barcode text:
¢ \\: Insert a backslash to barcode text.

e \0: Insert an AIM FNC1 character to barcode text in order to encode AIM structural data similar to GS1. It shall be placed at
beginning of the barcode text and it shall not be used with GS1 FNC1 (11") or FNC3 (\3"). If it is used together with the

61

2D Barcode VCL Components User Manual

structured append block (FNC2, "\2"), it shall be placed on front of the structured append block ("\2"). See also the "Structured
append" section below.

e \1: Inserta GS1 FNC1 character to barcode text in order to encode GS1 structural data. It shall be placed at beginning of the
barcode text and it shall not be used with AIM FNC1 (10") or FNC3 (\3"). If it is used together with the structured append
block ("\2"), it shall be placed on front of the structured append block (FNC2, "\2"). See also the "Structured append” section
below.

¢ \2[<File_ld> <Amount>, <Index>] Insert a structured append block (FNC2 and other structured append information) to the
barcode text in order to create the symbol in a structured append. See also the "Structured append" section below.

e \3: Insert a FNC3 character to barcode text, indicates that the symbol encodes a message used to program the reader
system. It shall be placed at beginning of the barcode text and it shall not be used with AIM FNC1 (10") or GS1 FNC1 (11"). If
it is used together with the structured append block (FNC2, "2"), it shall be placed on front of the structured append block
(FNC2, "\2"). See also the "Structured append” section below.

L]

\e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation (ECI)"
section below.

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that of the
default character set.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after
decoding. The ECl is identified by an integer (up to 6 digits) which is encoded in the Grid Matrix symbol by the ECI indicator block.
The escape sequence "\e[<ECI_Number>]" is used to place the EClindicator block to the barcode text:

e ECI_Number: The ECInumber, it's an integer between 0 and 811799 (including the boundaries), the leading zero is optional.

In a single symbol or structured append set of Grid Matrix symbols, if the AIM FNC1 (0"), GS1 FNC1 ({1"), FNC2 (structured
append block, "\2"), and FNC3 ('\3") are used, ECI indicator blocks may be placed anywhere behind of them, otherwise, they may
be placed anywhere in the barcode text. For example:

ABC\e[123]DEFabc\e[000003]def

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until the end
of the barcode text, or until another EC1 indicator block is encountered. Thus the interpretation of the ECI may straddle two or more
symbols.

Structured append

In order to handle larger messages than are practical in a single symbol, a data message can be distributed across several Grid
Matrix symbols. Up to 16 Grid Matrix symbols may be appended in a structured format to convey more data. If a symbol is part of a
structured append this shall be indicated by a structured append block in barcode text. The escape sequence "2[<File_lId>,
<Amount>, <Index>]" is used to place the structured append block to the barcode text:

o File_Id: The file identification. It's an integer between 0 and 255 (including the boundaries) in string format. The purpose of the
file identification is to increase the probability that only logically linked symbols are processed as part of the same message.

e Amount: The total amount of the symbol within the set of Grid Matrix symbols in the structured append format. It's an integer
between 1 and 16 (including the boundaries) in string format.

¢ Index: The position index of the symbol within the set of Grid Matrix symbols in the structured append format. It's an integer
between 1 and 16 (including the boundaries) in string format.

The AllowEscape property should be set to true in order to place the structured append block. The structured append block may only
be placed once in the barcode text. If the structured append block is used together with AIM FNC1 (10"), GS1 FNC1 (11") or FNC3
("\3"), the AIM FNC1 (10"), GS1 FNC1 (11") or FNC3 (3") shall be placed at beginning of the barcode text, then the structured
append block. Otherwise, the structured append block shall be placed at beginning of the barcode text. The OninvalidChar or
OninvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur if the structured append block be placed more than
once, or it isn't placed at beginning of the barcode text or behind of the AIM FNC1 (%0"), GS1 FNC1 ({1") or FNC3 (\3"). The

62

2D Barcode VCL Components User Manual

following is examples of structured append:

\2[79, 5, 2]ABCDEFGabcdefgl234567890. ..

\0\2[99, 6, 1]ASDFGHJKL098765...

Properties: Methods:
* Image e Create
e Barcode e Destroy
e Data (%) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight
Events:

e ShowQuietZone

e OnChange
e |eadingQuietZone

e OnEncode

TopQuietZone
TrailingQuietZone
BottomQuietZone
Locked
AllowEscape
MinVersion
MaxVersion
ECCLevel
ECClLevelUpgrade

L]

OnlinvalidChar
OnlnvalidLength
OnlnvalidDataChar (*)

OnlinvalidDatalLength (*)

OnDrawBarcode

e CurrentVersion (Read only)

e CurrentECCLevel (Read only)

(*): The Data property, OninvalidDatalLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.11 TBarcode2D HanXinCode

The component is used to create the Han Xin Code 2D barcode symbols. lt's defined in the pHanXinCode unit.

63

2D Barcode VCL Components User Manual

Han Xin Code is also known as Chinese Sensible Code, Itis a unique, variable size, matrix symbology specifically = &—|
optimized for two and four byte alphabets such as Chinese and other ideographic/pictographic alphabets. It is
equally suitable for single byte ISO Code Pages such as English.

H

ﬂ¥ o=
Han Xin Code also includes an option for octet byte encoding for applications such as graphics and audio. Han Xin Code
Extended Channel Interpretation (ECls) support is also included. It incorporates strong Reed-Solomon error correction to enable four

levels of error correction abilities to recover information from damaged symbols.
Symbol sizes

There are eighty-four sizes of Han Xin Code symbols, referred to as version 1 to 84, in increasing order of size and data capacity.
You can use the MinVersion and the MaxVersion properties to specifiy the minimum and maximum sizes for a Han Xin Code
symbol. They can be one of values from 1 to 84 (defined in the pHanXin unit), corresponding to the versions 1 to 84. The smallest
symbol size that accommodates the barcode text will be automatically selected between minimum and maximum symbol sizes. The
CurrentVersion property can be used to get the factual symbol size.

If the barcode text does not fill the maximum data capacity of the Han Xin Code symbol, remaining data capacity of the symbol will
be filled by using pad bits (the ECCLevelUpgrade property is set to false), or will be used to upgrade the error correction code level
(the ECCLevelUpgrade property is set to true). If the barcode text is so long that it cannot be encoded using the maximum symbol
size specified by the MaxVersion property, an OninvalidLength or OninvalidDataLength (only for Delphi/C++ Builder 2009 or later)
event will occur.

Error correction code (ECC)
There are four user-selectable levels of error correction, from L1 to L4 respectively in increasing order of recovery capacity.

You can use the ECCLevel property to specify the error correction code level for a Han Xin Code symbol. It can be one of these
values: elLevel_1, elLevel_2, elLevel 3, and elLevel_4 (they are defined in the pHanXinCode unit), corresponding to the ECC levels
from L1 to L4.

These ECC levels are listed in following table:

Value of ECCLevel property Error correction code level Recevory capacities (%) (approx.)
elLevel 1 L1 8%
elLevel_2 L2 15%
elLevel_3 L3 23%
elLevel_4 L4 30%

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by current symbol
size will be used for creating more robust symbols. Note, the new level is always no lower than the level specified by the ECCLevel
property, and the symbol size will not be increased, it may be determined depending on the length of barcode text, and the error
correction code level specified by the ECCLevel property (see also the "Symbol sizes" section above). In other words, only the
remaining capacity in current symbol size will be used to upgrade the error correction code level. The property CurrentECCLevel can
be used to get the factual error correction code level.

Quiet zones

The minimum quiet zone is equal to 3 modules on all four sides. So the minimum values ofLeadingQuietZone, TrailingQuietZone,
TopQuietZone, and BottomQuietZone properties are equal to 3.

Character set
o All 7-bit ASClI values can be encoded.
e 8-bit binary data can be encoded.
e GB 18030 Chinese characters can be encoded.
e One non-data characters can be encoded:

o ECI: ECI indicator blocks is for the standardized encoding of message interpretation information. The escape

64

2D Barcode VCL Components User Manual

sequence "\e[<ECI_Number>]" can be used to place the ECI indicator block to barcode text. See also the "Extended
Channel Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place non-data characters.
Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert them to the
barcode text:

e \\ Insert a backslash to barcode text.

¢ \e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation (ECI)"
section below.

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that of the
default character set.

The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after
decoding. The ECI is identified by an integer (up to 6 digits) which is encoded in the Han Xin Code symbol by the ECI indicator
block. The escape sequence "\e[<ECI|_Number>]" is used to place the EClindicator block to the barcode text:

e ECI_Number: The ECInumber, it's an integer between 0 and 999999 (including the boundaries), the leading zero is optional.
Ina Han Xin Code symbol, the EClindicator blocks may be placed anywhere in the barcode text. For example:
ABC\e[123]DEFabc\e[000003]def

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until the end
of the barcode text, or until another ECI1 indicator block is encountered. Thus the interpretation of the ECI may straddle two or more
symbols.

65

2D Barcode VCL Components User Manual

Properties: Methods:
e Image e Create
e Barcode e Destroy
e Data (¥) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight
Events:

e ShowQuietZone

e OnChange
e |eadingQuietZone

e OnEncode

e TopQuietZone
P e OnlnvalidChar
e TrailingQuietZone « OninvalidLength

e OnlinvalidDataChar (*)
e OninvalidDataLength (*)

¢ BottomQuietZone

e Locked

¢ AllowEscape e OnDrawBarcode
* MinVersion

® MaxVersion

e ECClLevel

e ECCLevelUpgrade

* ReviseVersion5

e CurrentVersion (Read only)

e CurrentECCLevel (Read only)

(*): The Data property, OninvalidDataLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.12 TBarcode2D_MaxiCode

The component is used to create the MaxiCode 2D Barcode symbols. It's defined in the pMaxiCode unit.

66

2D Barcode VCL Components User Manual

MaxiCode is a public domain, machine-readable symbol system originally created and used by United
Parcel Service in 1992. It was designed for tracking and managing the shipment of packages, and can be
quickly automatically scanned on high-speed conveyor lines.

MaxiCode is a fixed-size symbology. A MaxiCode symbol appears as a 1.11 * 1.054 inchs square, with a

> o hamsr T
bullseye in the middle, surrounded by a pattern of hexagonal dots (modules). Each hexagonal dot (module) ¥4, -'.}__I'.,i::{.’;: ._.:"::‘:":
measures 0.035 * 0.041 inches. R T Y

MaxiCode

Modes
MaxiCode has modes which are used to define the format of the message and the level of error correction within a symbol:

e Mode 2: It encodes a structured carrier message with a numeric postal code, and an optional secondary message. A numeric
postal code, a country code, and a class of service code assigned by the carrier are included in the structured carrier
message.

The symbol employs enhanced error correction for the structured carrier message and standard error correction for the
secondary message, see also the "Error checking and correcting (ECC)" section below.

It is designed for use in the transport industry. Primary use is US domestic destinations.
The formats of mode 2 barcode text are specified in the following list:
o [)>{RS}01{GS}YYPPPPPPPPP{GS}CCC{GS}SSS{GS}MESSAGE{RSKEOT}

= YY: Date (year), 2 digits.

= PPPPPPPPP: Numeric postal code, up to 9 digits. Only first 9 digits will be encoded if its length is greater than 9
digits.

= CCC: Country code, 3 digits.

= SSS: Serivce class, 3 digits

= MESSAGE: Optional secondary message. All 256 of the ASCII characters can be used. A maximum of about 71
alphanumeric characters or about 107 digits can be encoded in the message.

s {RS}: ASCII character RS (ASCII value 30). The RS character after the secondary message is optional. If the
AllowEscape property is set to true, you can use the "\r" instead of the RS character.

s {GS}: ASCII character GS (ASClII value 29). It's used to delimit each field in barcode text. The GS character afte:
the service class can be omitted if secondary message doesn't exist. If the AllowEscape property is set to true,
you can use the "\g" instead of the GS character.

= {EOT}: Optional ASCII character EOT (ASCII value 4). If thAllowEscape property is set to true, you can use the
"\t" instead of the EOT character.

For example (Date:96; Postal code: 123456789; Country code: 840; Service class: 001; Secondary message: 'PA
USA' + Chr(29) + 'UPS\123'):

®m '[)>' + Chr(30) + '01l' + Chr(29) + '96123456789' + Chr(29) + '840' + Chr(29)
+ '001'" + Chr(29) + 'PA USA' + Chr(29) + 'UPS\123' + Chr(30) + Chr(4)
] "[)>\r01\g96123456789\g840\g001\gPA USA\gUPS\\123\r\t'
o PPPPPPPPP{GS}CCC{GS}SSS{GS}MESSAGE{EOT}
= PPPPPPPPP: Numeric postal code, up to 9 digits. Only first 9 digits will be encoded if its length is greater than 9
digits.
= CCC: Country code, 3 digits.
= SSS: Serivce class, 3 digits

= MESSAGE: Optional secondary message. All 256 of the ASCII characters can be used. A maximum of about 82
alphanumeric characters or about 121 digits can be encoded in the message.

67

2D Barcode VCL Components User Manual

s {GS}: ASCII character GS (ASClII value 29). It's used to delimit each field in barcode text. The GS character afte:
the service class can be omitted if secondary message doesn't exist. If the AllowEscape property is set to true,
you can use the "\g" instead of the GS character.

= {EOT}: Optional ASCII character EOT (ASCII value 4). If thAllowEscape property is set to true, you can use the
"\t" instead of the EOT character.

For example (Postal code:123456789; Country code: 840; Service class:001; Secondary message:'PA USA' +
Chr(29) + 'UPS\123"):

m '123456789' + Chr(29) + '840' + Chr(29) + '001' + Chr(29) + 'PA USA' +
Chr(29) + 'UPS\123' + Chr(4)
L] '123456789\g840\g001\gPA USA\gUPS\\123\t'
e Mode 3: It encodes a structured carrier message with an alphanumeric postal code, and an optional secondary message. An

alphanumeric postal code, a country code, and a class of service code assigned by the carrier are included in the structured
carrier message.

The symbol employs enhanced error correction for the structured carrier message and standard error correction for the
secondary message, see also the "Error checking and correcting (ECC)" section below.

Itis designed for use in the transport industry. Primary use is international destinations.
The mode 3 is similar to mode 2, but the postal code field encodes 6 alphanumeric characters.
The formats of mode 3 barcode text are specified in the following list:

o [)>{RS}01{GS}YYPPPPPP{GS}CCC{GS}SSS{GS}MESSAGE{RSHEOT}

= YY: Date (year), 2 digits.

= PPPPPP: Alphanumeric postal code, up to 6 alphanumeric characters. Only first 6 characters will be encoded if
its length is greater than 6 characters. All upper case letters, all numeric characters, space character, and the
punctuations and symbols corresponding to the ASCIl values from 34 to 58 can be encoded.

s CCC: Country code, 3 digits.
= SSS: Serivce class, 3 digits
s MESSAGE: Optional secondary message. All 256 of the ASClII characters can be used. A maximum of about 71

alphanumeric characters or about 107 digits can be encoded in the message.
s {RS}: ASCII character RS (ASCII value 30). The RS character after the secondary message is optional. If the

AllowEscape property is set to true, you can use the "\r" instead of the RS character.

s {GS}: ASCII character GS (ASClII value 29). It's used to delimit each field in barcode text. The GS character afte:
the service class can be omitted if secondary message doesn't exist. If the AlowEscape property is set to true,
you can use the "\g" instead of the GS character.

s {EOT}: Optional ASCII character EOT (ASCII value 4). If th&llowEscape property is set to true, you can use the
"\t" instead of the EOT character.

For example (Date: 96; Postal code: ABC12; Country code: 840; Service class: 001; Secondary message:'PA USA' +
Chr(29) + 'UPS\123'):

= '[)>' + Chr(30) + '01' + Chr(29) + '96ABC12' + Chr(29) + '840' + Chr(29) +
"001' + Chr(29) + 'PA USA' + Chr(29) + 'UPS\123' + Chr(30) + Chr(4)

- "[)>\r01\g96ABC12\g840\g001\gPA USA\gUPS\\123\r\t'
o PPPPPP{GS}CCC{GS}SSS{GS}MESSAGE{EOT}

s PPPPPP: Alphanumeric postal code, up to 6 alphanumeric characters. Only first 6 characters will be encoded if
its length is greater than 6 characters. All upper case letters, all numeric characters, space character, and the

68

2D Barcode VCL Components User Manual

punctuations and symbols corresponding to the ASCIl values from 34 to 58 can be encoded.
= CCC: Country code, 3 digits.
= SSS: Serivce class, 3 digits

s MESSAGE: Optional secondary message. All 256 of the ASCII characters can be used. A maximum of about 82
alphanumeric characters or about 121 digits can be encoded in the message.

s {GS}: ASCII character GS (ASClII value 29). It's used to delimit each field in barcode text. The GS character aftel
the service class can be omitted if secondary message doesn't exist. If the AllowEscape property is set to true,
you can use the "\g" instead of the GS character.

s {EOT}: Optional ASCII character EOT (ASCII value 4). If thAllowEscape property is set to true, you can use the
"\t" instead of the EOT character.

For example (Postal code: ABC12; Country code: 840; Service class: 001; Secondary message: 'PA USA' + Chr(29) +
'UPS\123'):

L] '"ABC12' + Chr(29) + '840' + Chr(29) + '001' + Chr(29) + 'PA USA' + Chr(29) +
"UPS\123' + Chr(4)
] 'ABC12\g840\g001\gPA USA\gUPS\\123\t'
¢ Mode 4:
Indicates that the symbol encodes an unformatted message. The barcode message is divided into a primary message and a

secondary message internally, the symbol employs enhanced error correction for the primary message and standard error
correction for the secondary message.

All 256 of the ASCII characters can be used. A maximum of about 93 alphanumeric characters or about 138 digits can be
encoded in the symbol.

e Mode 5:

Indicates that the symbol encodes an unformatted message. The barcode message is divided into a primary message and a
secondary message internally, the symbol employs enhanced error correction for both the primary and secondary messages.

All 256 of the ASCII characters can be used. A maximum of about 77 alphanumeric characters or about 113 digits can be
encoded in the symbol.

The mode 5 is similar to mode 4, but it employs enhanced error correction for secondary messages.
e Mode 6:

Indicates that the symbol encodes a message used to program the reader system. The barcode message is divided into a
primary message and a secondary message internally, the symbol employs enhanced error correction for the primary
message and standard error correction for the secondary message.

All 256 of the ASCII characters can be used. A maximum of about 93 alphanumeric characters or about 138 digits can be
encoded in the symbol.

You can use the Mode property to specify the factual mode for a MaxiCode symbol. It can be one of values from 2 to 6,
corresponding to the modes from 2 to 6. They are defined in the pMaxiCode unit.

Also, you can set the AutoMode property to true, in order to automatically select the suitable mode depending on the barcode text
and the value of Mode property. And use the CurrentMode property to get the factual mode:

¢ [fthe Mode property is set to mode 2 or 3, the factual mode will be selected between mode 2 and 3, depending on the postal
code field in the barcode text.

e |f the Mode property is set to mode 4, the factual mode will be selected between mode 4 and 5, depending on the length of
barcode text. If the length of barcode text is so short that can be encoded by using mode 5, the mode 5 will be used in order to
employ enhanced error correction, otherwise the mode 4 will be used in order to accommodate more barcode text.

e If the Mode property is set to mode 5, the mode 5 will be selected always, in order to insure high level of enhanced error

69

2D Barcode VCL Components User Manual

correction.
e |f the Mode property is set to mode 6, the mode 6 will be selected always, in order to encodes a message used to program
the reader system.

Symbol size

Each MaxiCode symbol is of a fixed size, having 884 hexagonal modules arranged in 33 rows around a central finder pattern. Each
row consists of a maximum of 30 modules.

Also, each symbol, including the quiet zones, is of a fixed physical size, nominally 28.14mm wide, 26.91mm high. Each hexagonal
dot (module) measures 0.889 * 1.041 millimeters.

Quiet zones

The MaxiCode symbology require the minimum 1 module quiet zones as measured from the outside edges. So the minimum values
of LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 1.

Error checking and correcting (ECC)

MaxiCode symbology offer two levels of error checking and correction, Enhanced Error Correction (EEC) and Standard Error
Correction (SEC), which are specified by the Mode, see also the "Modes" section above.

In mode 2 and 3, the symbol employs EEC for the structured carrier message and SEC for the secondary message. In mode 4, 5,
and 6, MaxiCode symbols are internally divided into a primary message and a secondary message, the mode 4 and 6 symbol
employ EEC for the primary message and SEC for the secondary message. the mode 5 symbol employs EEC for both the primary
and secondary messages.

Character set

In mode 2, all numeric characters can be encoded in the country code, service class, and postal code fields. All 256 of the ASCII
characters can be encoded in the secondary message.

In mode 3, all numeric characters can be encoded in the country code and service class fields, all upper case letters, all numeric
characters, space character, and punctuations and symbols corresponding to the ASClII values from 34 to 58 can be encoded in the
postal code field. All 256 of the ASCIl characters can be encoded in the secondary message.

Inmode 4, 5 and 6, All 256 of the ASCII characters can be encoded in the entire message.
The default interpretation of these characters shall be:

e Values 0-127, in accordance with ANSI X3.4, i.e. all 128 ASCIl characters
e values 128-255 in accordance with ISO 8859-1: Latin Alphabet No. 1, i.e. extended ASClIl characters.

This default interpretation corresponds to EC1000003.
Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert them to the
barcode text:

¢ \\ Insert a backslash to barcode text.

¢ \f: Insert a FS character (ASClIl value 28) to barcode text. See also the "Modes" section above.

¢ \g: Insert a GS character (ASCll value 29) to barcode text. See also the "Modes" section above.

¢ \r: Insert a RS character (ASCll value 30) to barcode text. See also the "Modes" section above.

e \t: Insert a EQT character (ASClIl value 4) to barcode text. See also the "Modes" section above.

¢ \e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation (ECI)"
section below.

¢ \s[<Index> <Amount>} Insert a structured append block to barcode text in order to create the symbol in a structured

70

2D Barcode VCL Components User Manual

append. See also the "Structured append” section below.
Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that of the
default character set. Four broad types of interpretations are supported in MaxiCode:

¢ International character sets (or code pages).

e General purpose interpretations such as encryption and compaction.

e User defined interpretations for closed systems.

e Control information for structured append in unbuffered mode.
The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after

decoding. The ECl is identified by an integer (up to 6 digits) which is encoded in the MaxiCode symbol by the ECI indicator block.
The escape sequence "\e[ECI_Number]" is used to place the EClindicator block to the barcode text:

e ECI_Number: The ECInumber, it's an integer between 0 and 999999 (including the boundaries), the leading zero is optional.

ECl indicator blocks may be placed anywhere in the barcode text in a single or structured append set of MaxiCode symbols, but
cannot be within the primary message (structured carrier message) for modes 2 and 3:
e Inmode 2 and 3, the ECI blocks may only be invoked within secondary message. For example:
[)>01\r01\g99123456789\g123\g456\g\e[002]ABCg\e[123]DEF\r\t
e Inmode 4, 5 and 6, the ECI blocks may be invoked anywhere in the barcode text. For example:
ABC\e[23]1DEFG\e[001]HIJKLMN
The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until the end

of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI| may straddle two or more
symbols.

Structured append

Up to eight MaxiCode symbols may be appended in a structured format to convey more data. If a symbol is part of a structured
append this shall be indicated by a structured append block in barcode text. The escape sequence "\s[<Index>, <Amount>]" is used
to place the structured append block to the barcode text:

¢ Index: The position index of the symbol within the set of MaxiCode symbols in the structured append format. It's an integer
between 1 and 8 (including the boundaries) in string format.
e Amount: The total amount of the symbol within the set of MaxiCode symbols in the structured append format. It's an integer

between 2 and 8 (including the boundaries) in string format.

The structured append block may only be placed once in the barcode text. The OninvalidChar or OninvalidDataChar (only for
Delphi/C++ Builder 2009 or later) event will occur if the structured append block be placed more than once. TheAllowEscape
property should be set to true in order to place the structured append block. The valid locations for structured append block in the
barcode text are specified in the following:

e In the mode 2 and mode 3 of MaxiCode symbols, the structured append block shall be placed at beginning or end in the
barcode text, or anywhere in the secondary message. For example:
\s[2,5]1[)>01\r01\g99123456789\g123\g456\gABCDEF\r\t
[)>01\r01\g99123456789\g123\g456\g\s[2,5]ABCDEF\r\t
[)>01\r01\g99123456789\g123\g456\gABC\s[2,5]DEF\r\t
[)>01\r01\g99123456789\g123\g456\gABCDEF\s[2,5]\r\t

[)>01\r01\g99123456789\g123\g456\gABCDEF\r\t\s[2,5]

¢ |nthe mode 4, 5 and 6 of MaxiCode symbols, the structured append block can be placed at anywhere in the barcode text. For

71

2D Barcode VCL Components User Manual

example:
\s[2,5]ABCDEFG
ABC\s[2,5]DEFG

ABCDEFG\s[2,5]

Properties: Methods:
* Image e Create
e Barcode e Destroy
e Data (*) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight Event
vents:
e ShowQuietZone onch
¢ OnChange

e | eadingQuietZone OnEncod
e OnEncode

e TopQuietZone
e OnlnvalidChar

e TrailingQuietZone « OninvalidLength

e OninvalidDataChar (*)

e BottomQuietZone

e | ocked

e OninvalidDataLength (*)
e Mode

e OnDrawBarcode
e AutoMode

e AllowEscape

e CurrentMode (Read only)

(*): The Data property, OninvalidDataLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.13 TBarcode2D_MicroPDF417

The component is used to create the MicroPDF417 Barcode symbols. Itis defined in the pMicroPDF417 unit.

MicroPDF417 is a multi-row symbology, derived from and closely based onPDF417. MicroPDF417 is designed ahib:
for applications with a need for improved area efficiency but without the requirement for PDF417's maximum data ‘%Wm%lm
capacity. A limited set of symbol sizes is available, together with a fixed level of error correction for each symbol Micmpopqrf-,'r
size. Module dimensions are user-specified to enable symbol production and reading by a wide variety of techniques.

Symbol sizes

72

2D Barcode VCL Components User Manual

MicroPDF417 symbols shall conform with certain predefined combinations of number of stacked rows, columns, and number of
error-correction codewords, referred to as symbol sizes. The symbol size values frommpSize_1_11 to mpSize_4_44
corresponding to these symbol sizes, and denotation the number of columns and rows in every symbol size. For example, the
symbol size value mpSize_2_23 denotations the MicroPDF417 symbol size is 23 stacked rows by 2 columns. These symbol size
values are defined in the pMicroPDF417 unit.

The RowHeight property can be used to specify the height for each row, in modules.

You can use the MinSize property to specify a minimum symbol size, and use the MaxSize property to specifiy a maximum symbol
size. According to the priority order specified by the StretchOrder property, the first symbol size that accommodates the barcode text
will be automatically selected between the minimum symbol size and the maximum symbol size.

You can use the CurrentSize property to get the factual symbol size.

If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by the MaxSize property, an
OnlinvalidLength or OninvalidDataLength (only for Delphi/C++ Builder 2009 or later) event will occur.

Quiet zones

The symbol shall include a quiet zone on all four sides. The minimum quiet zone is equal to 1 module on all four sides. So the
minimum values of LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 1.

Error checking and correcting (ECC)

Each MicroPDF417 symbol contains at least seven error correction codewords. The error correction codewords provide capability
for both error detection and correction. The number of error correction codewords for a MicroPDF417 symbol is fixed for each
symbol size.

Character set
e All 8-bit values can be encoded. The default interpretation shall be:

o Forvalues 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII).
o For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).

This interpretation corresponds to EC1000003.

MicroPDF417 has three unique data compaction modes as Text compaction mode, Numeric compaction mode, and Byte
compaction mode. All 8-bit values are encoded by switching internally between all 3 compaction modes:

o Text compaction mode: Permits all printable ASCII characters, i.e. ASCII values from 32 to 126 inclusive accordance
with ISO/IEC 646, as well as selected control characters (CR, HT, and LF).

The mode has four sub-modes:

s Alpha: Uppercase letters and space.
= Lower: Lowercase letters and space.
= Mixed: Numeric and some punctuations.

= Punctuation: Some punctuations.
The sub-mode will be switched automatically in order to minimize the symbol size.
o Numeric compaction mode: Permits efficient encoding of numeric data string.

o Byte compaction mode: Permits all 256 possible 8-bit byte values to be encoded. This includes all ASCII characters
value from 0 to 127 inclusive and provides for international character set support.

In the specification of MicroPDF417, the initial compaction mode in effect at the start of each symbol shall always be Byte
compaction mode. You can change the initial compaction mode by using the DefaultEncodeMode and
DefaultTextEncodeMode properties, in order to macth the reader. If the poMicroPDF417Explicit901 value is included in the

73

2D Barcode VCL Components User Manual

Options property, a mode latch to Byte compaction mode "\901" will be explicitly inserted into beginning of barcode text, in
order to work with any reader.

The compaction mode will be switched automatically in a MicroPDF417 symbol in order to minimize the symbol size. Also,
you can manually switch the code set by using escape sequences "\900", "\901", "\902", and "\924". See also the "Escape
sequences" section below.

The FNC1 characters can be encoded for compatibility with some existing applications. There are two mode FNC1
characters to identify symbols encoding messages formatted according to specific predefined industry or application
specifications, also the FNC1 character can be used as the data field separator:

o First position mode: FNC1 in this mode indicator identifies symbols encoding data formatted according to the GS1

Application Identifiers standard. For this purpose, it shall only be used once in a symbol and shall be placed at
beginning of the barcode text.

If any one of escape sequences in 903", "\904" and "\905" followed by an Application Identifier (2 or more digits) is
placed at beginning of barcode text, it represents a leading FNC1 character in "First position" mode, and implies a
mode latch to Text compaction mode or Numeric compaction mode. See also the "Escape sequences" section below.

Also, you can place an escape sequence \f' followed by an Application Identifier (2 or more digits) at beginning of
barcode text instead of the "\903", "\904" or "\905" escape sequence followed by the Application Identifier, to place the
FNC1 character in "First position" mode. The component will automatically select one of escape sequences from
"\903", 904" and "\905" depending on on the barcode text, in order to minimize the symbol size.

The escape sequences "906", "\907", 912", "\914" and "\915" can be placed the FNC1 character in "First position"
mode too. See also the "Escape sequences" section below.

Second position mode: FNC 1 in this mode indicator identifies symbols formatted in accordance with specific industry
or application specifications previously agreed with AIM International. It is immediately followed by an application
indicator assigned to identify the specification concerned by AIM International. For this purpose, it shall only be used
once in a symbol and shall be placed at beginning of the barcode. An application indicator may take the form of any

single Latin alphabetic character from the set "a" to "z" and "A" to "Z", or a two-digit number.

If any one of escape sequences in "908" and "\909" followed by an application indicator (single Latin alphabetic
character from the set "a" to "z" and "A" to "Z", or a two-digit number) is placed at beginning of barcode text, it
represents a leading FNC1 character in "Second position" mode, and implies a mode latch to Text compaction mode

or Numeric compaction mode. See also the "Escape sequences" section below.

Data field separator. The FNC1 character may also be used as a data field separator(i.e. at the end of a variable-
length data field), in which case it will be represented in the transmitted message as GS character (ASCII value 29). The
data field separator shall not be placed at beginning of barcode text.

If any one of escape sequences in "\903", "\904" and "\905" is placed in the barcode text, but not at beginning of the
barcode text, it represents a data field separator, and implies a mode latch to Text compaction mode or Numeric
compaction mode. See also the "Escape sequences" section below.

Also, you can use the escape sequence "\" instead of the "\903", "\904" or "\905" to placed the FNC1 character as the
data field separator. The component will automatically select one of escape sequences from "\903", "\904" and "\905"
based on the barcode text, in order to minimize the symbol size.

The appearance of an adjacent pair of repeated "903", "\904" or "\905" escape sequences will cause the decoder to
divide the transmission at that point, but without transmitting the two implied GS (ASCII value 29) characters
themselves.

e The ECI indicator blocks can be encoded for the standardized encoding of message interpretation information. The escape
sequence "\e[<ECI Numnerm>]" can be used to place the ECI indicator block to barcode text. See also the "Extended
Channel Interpretation (ECI)" section below.

Escape sequences

74

2D Barcode VCL Components User Manual

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert them to the
barcode text:

L]

L]

L]

\\: Insert a backslash to barcode text.

\5: Insert a 05 macro to barcode text. It's used to abbreviate the industry specific header 'T)>{RS}05{GS}" and trailer "{RS}
{EOT}", in order to reduce the size of symbol. It must only be placed once at beginning of the barcode text and it shall not be
used in conjunction with a series of structured append symbols.

\6: Insert a 06 macro to barcode text. It's used to abbreviate the industry specific header 'T)>{RS}06{GS}" and trailer "{RS}
{EOT}", in order to reduce the size of symbol. It shall only be placed once at beginning of the barcode text and it shall not be
used in conjunction with a series of structured append symbols.

\r: Instructs the reader to interpret the data contained within the MicroP DF417 symbol as programming for reader initialisation.
It shall only be placed once at beginning of the barcode text. In the case of a structured append initialisation sequence, it shall
appear in every symbol.

\e[<ECI_Numnerm>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation (ECI)"
section below.

\f: Insert a FNC1 character either in "First position" mode or as a data field separator, to the barcode text. One of 903",
"\904", and "\905" will be automatically selected instead of the "\", to insert to the symbol, depending on the barcode text. Ifit's
placed at beginning of barcode text, it represents a FNC1 character in "First position" mode, otherwise, it represents a data
field separator. See also the "Character set" section above.

Note, when the "poFirstFNC 1MatchAl01" is included in the value of Options property, if the "\f" followed by a SSC-14 number
(including Application Identifier 01 and 13-digit data, the checkdigit isn't required) is placed at beginnig of barcode text, the
"\905" will be selected to encode the FNC1 character in order to reduce the symbol size (the leading Application Identifier 01
is not encoded in the SSC-14 number).

\s[<Index>, <File_ID>, <File_Name>, <Amount>, <Time_Stamp>, <Sender>, <Address>, <File_Size>, <Checksum>]
Insert structured append control block to barcode text in order to create the structured append symbol. See also the
"Structured append" section below.

\,: Insert a comma to File name, Sender or Address field in the structured append control block. It shall only be placed in these
fields of structured append control. See also the "Structured append" section below.

\t: Structured append terminator. If the segment count is unused in the structured append control block of a structured append
symbols set, this terminator is required in last symbol within the set of the structured append symbols. Otherwise, it's optional.
See also the "Structured append” section below.

\<nnn>: Insert a function codeword. This "<nnn>" can be one of these values:
o 900: Manually places a mode latch to Text compaction mode.

o 901: Manually places a mode latch to Byte compaction mode. It shall be used when the total number of subsequent
bytes to be encoded is not a multiple of 6, otherwise, it will be changed to "\924" automatically by the component.

o 902: Manually places a mode latch to Numeric compaction mode.

o 903: If it's placed at beginning of barcode text, it represents a leading FNC1 character in "First position" mode and
indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification (UCC/EAN-128
emulation, the symbology identifier prefix is set to JC1 or JL3). Also it implies a mode latch to Mixed sub-mode of Text
compaction mode.

If it's placed in the barcode text, but not at beginning of the barcode text, it represents an FNC1 character as field
separator, and implies a mode latch to Alpha sub-mode of Text compaction mode.

o 904: If it's placed at beginning of barcode text, it represents a leading FNC1 character in "First position" mode and
indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification (UCC/EAN-128

75

2D Barcode VCL Components User Manual

emulation, the symbology identifier prefix is set to]C1 or]L3). Also it implies a mode latch to Numeric compaction
mode.

If it's placed in the barcode text, but not at beginning of the barcode text, it represents an FNC1 character as field
separator, and implies a mode latch to Mixed sub-mode of Text compaction mode.

905: If the "905" followed by 13 required digits is placed at beginning of barcode text, it represents a leading FNC1

character in "First position" mode and encodes a SCC-14 number together with subsequent 13 digits (the Application
Identifier 01 is implied and the last checkdigit isn't required). It indicates that the MicroPDF417 symbol's data output
shall conform with the Code128 specification (UC C/EAN-128 emulation, the symbology identifier prefix is set to]C1 or
JL3). Also it implies a mode latch to Numeric compaction mode.

If the it is placed in the barcode text, but not at beginning of the barcode text, it represents an FNC 1 character as field
separator, and implies a mode latch to Numeric compaction mode.

906: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Mixed sub-mode of
Text compaction mode. It not only indicates that the MicroPDF417 symbol's data output shall conform with the Code 128
specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]JL3), but also indicates that a
linear symbol printed below the symbol is "linked" to the data of the symbol.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlinvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

907: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric compaction
mode. it not only indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification
(UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but also indicates that a linear symbol
printed below the symbol is "linked" to the data of the symbol.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlinvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

908: The "908" followed by an application indicator (single Latin alphabetic character from the set "a" to "z" and "A" to

"Z", or a two-digit number) represents a leading FNC1 character in "Second position" mode, and indicates that the
MicroPDF417 symbol's data output shall conform with the Code128 specification (used by AIM Global, the symbology
identifier prefix is set to]C2 or]L4). Also it implies a mode latch to Mixed sub-mode of Text compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlinvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

909: The "\909" followed by an application indicator (single Latin alphabetic character from the set "a" to "Z" and "A" to

"Z", or a two-digit number) represents a leading FNC1 character in "Second position" mode, and indicates that the
MicroPDF417 symbol's data output shall conform with the Code128 specification (used by AIM Global, the symbology
identifier prefix is set to]C2 or]L4). Also it implies a mode latch to Numeric compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlinvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

910: It indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification (standard
data package, the symbology identifier prefix is set to]CO or]L5), and implies a mode latch to Mixed sub-mode of Text
compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

911: It indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification (standard
data package, the symbology identifier prefix is set to]CO or]L5), and implies a mode latch to Numeric compaction
mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlinvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

76

2D Barcode VCL Components User Manual

912[AAYYMMDDBB]: It represents a leading FNC1 character in "First position" mode and implies a mode latch to
Numeric compaction mode. Not only does it indicate that the MicroPDF417 symbol's data output shall conform with the
Code128 specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to JC1 or]L3), but also it
encodes that the data begins with a 6-digit date field (Application Identifier is 11, 13, 15, or 17), and this date field may
be followed by an implied Application Identifier 10 or 21 as well:

= AA: Application Identifier of the 6-digit data field. It can be one of 11, 13, 15, or 17.

= YY: Year of the 6-digit data field.

= MM: Month of the 6-digit data field.

= DD: Day of the 6-digit data field.

= BB: An optional Application Identifier that follows the 6-digit data field. It can be one of 10 or 21.
For example:
\912[1199010721]
Also, You can encode the 6-digit date field and the subsequent Application Identifier by yourself:
\912994071
You can explicitly insert a mode latch to Numeric compaction mode after the "\912" by using the "-":
\912[-1199010721]

\912[-1994071

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlinvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

914: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric compaction
mode. It not only indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification
(UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but also indicates that the data begins
with an implied Application Identifier is 10.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

915: It represents a leading FNC 1 character in "First position" mode and implies a mode latch to Numeric compaction
mode. it not only indicates that the MicroPDF417 symbol's data output shall conform with the Code128 specification
(UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but also indicates that the data begins
with an implied Application Identifier is 21.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

916: Insert a 05 macro to barcode text. It shall only be placed once at beginning of the barcode text and it shall not be
used in conjunction with a series of structured append symbols. It's completely equivalent to escape sequence "\5".

917: Insert a 06 macro to barcode text. It shall only be placed once at beginning of the barcode text and it shall not be
used in conjunction with a series of structured append symbols. It's completely equivalent to escape sequence "\6".

918: It shall be used as a linkage flag to signal the presence of an associated linear component in a composite symbol
(other than an ECC.UCC composite symbol). The "\918" may be placed anywhere in the barcode text.

919: Reserved.

920: It shall be used as a linkage flag to signal the presence of an associated linear component in an ECC.UCC
composite symbol. The "\920" may be placed anywhere in the barcode text.

921: Instructs the reader to interpret the data contained within the MicroPDF417 symbol as programming for reader

7

2D Barcode VCL Components User Manual

initialisation. It only shall be placed once at beginning of the barcode text. In the case of a structured append
initialisation sequence, it shall appear in every symbol. lt's completely equivalent to escape sequence "\r".

o 924: Manually places a mode latch to Byte compaction mode. It shall be used when the total number of subsequent
bytes to be encoded is an integer multiple of 6, otherwise, it will be changed to "\901" automatically by the component.

For some reader, the meanings of some function codewords don't conform with the MicroPDF417 specification. You can use
the Options property to change the meanings of these fucntion codewords, in order to match the reader.

Note, the "{RS}" is ASCII character RS (ASCII value 30), the{GS}" is ASCII character GS (ASCII value 29), and the{EOT}" is
ASClII character EOT (ASCll value 4).

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that of the
default character set. Five broad types of interpretations are supported in MicroPDF417:

¢ International character sets (or code pages).

e General purpose interpretations such as encryption and compaction.

e User defined interpretations for closed systems.

e Transmission of control information for structured append.

e Transmission of uninterpreted MicroPDF417 codewords.

The ECl is identified by an integer (up to 6 digits) which is encoded in the MicroPDF417 by the ECI indicator block. The escape
sequence "\e[<ECI_Number>]" is used to place the EClindicator block to the barcode text:

e ECI_Number: The ECInumber, it's an integer between 0 and 999999 (including the boundaries), the leading zero is optional.

EClindicator blocks may be placed anywhere in the barcode text in a single or structured append set of MicroPDF417 symbols. For
example:

ABC\e[123]DEFabc\e[000003]def

Normally, the sub-mode invoked immediately prior to the EC| escape sequence is preserved for the encodation immediately after it.
Thus, sub-mode latches and shifts are preserved across an ECI escape sequence; and thus a sub-mode shift immediately before
an ECl escape sequence is not ignored. If the value "polgnoreShiftBeforeECI" is included in the Options property, the sub-mode shift
immediately before an ECI escape sequence is ignored, but a sub-mode latch immediately before an ECI| escape sequence is
never ignored.

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until the end
of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI| may straddle two or more
symbols.

Structured append

Structured append provides a mechanism for the data in a file too large to be split into blocks and be represented in more than one
MicroPDF417 symbol. Up to 99999 individual MicroPDF417 symbols may be used to encode data in structured append.

Structured append symbols differ from ordinary MicroPDF417 symbols in that they contain additional control information in a
structured append control block. The control block defines the file ID, the concatenation sequence and optionally other information
about the file. structured append decoder uses the control block's information to reconstruct the file correctly independently of symbol

scanning order. The escape sequence "\s[<Index>, <File_ID>, <File_Name>, <Amount>, <Time_Stamp>, <Sender>, <Address>,
<File_Size>, <Checksum>]" is used to place the structured append control block to the barcode text:

¢ Index: The position index of the symbol within the set set of MicroPDF417 symbols in the structured append format. It's an
integer between 1 and 999999 (including the boundaries) in decimal string format. Note, the field is required.

¢ File_ID: The file ID. It is a variable length numeric sequence which contains one or more triads of digits. Each triad of digits is
an integer between 000 to 899 (the leading zero is required), in decimal string format. For each related structured append

78

2D Barcode VCL Components User Manual

symbol, the file ID should be specified using the same numeric sequence. This ensures that all reassembled symbol data
belongs to the same distributed file representation. Note, the field is required.

File_Name: The file name. It's a text string with an implied reset to ECI 000002. The EC| escape sequences may be used in
order to set a different ECI within the field. Note, the field is optional.

Amount: The segment count (identifying the total number of structured append symbols in the distributed file). It's an integer
between 2 and 99999 (including the boundaries) in decimal string format. Note, the field is optional, if it's used, that field shall
appear in every segment.

Time_Stamp: The time stamp. It indicates the time stamp on the source file. It's a GMT time in yyyy-mm-dd hh:nn:ss"
format:

o yyyy: 4-digit year.

o mm: 2-digit month, the leading zero is optional.

o dd: 2-digit day, the leading zero is optional.

o hh: 2-digit hour in 24 hours format, the leading zero is optional.

o nn: 2-digit minute, the leading zero is optional.

o ss: 2-digit second, the leading zero is optional.

Note, entire time portion or the minute and second portion are optional, i.e. the "yyyy-mm-dd", "yyyy-mm-dd hh", and
"yyyy-mm-dd hh:nn" formats are valid. If the hour, minute or second portion is not included, they defaults to 00.

Sender: The sender, It's a text string with an implied reset to EC1 000002. The ECI escape sequences may be used in order
to set a different ECI within the field. Note, the field is optional.

Address: The address, It's a text string with an implied reset to EC| 000002. The ECI escape sequences may be used in
order to set a different ECl within the field. Note, the field is optional.

File_Size: The file size. It's an integer in decimal string format, and indicates the size in bytes of the entire source file. Note,
the field is optional.

Checksum: The checksum, It's an integer value of the 16-bit (2 bytes) CRC checksum using the CCITT-16 polynomial
computed over the entire source file, in decimal string format. You can use the GetCheckSum method to calculate the
checksum for a source file. Note, the field is optional.

The ECI escape sequences, 900", 901", "\902", and "\924" can be used in the File_Name, Sender and Address fields. If you
want place the comma in these fields, please use the escape sequence "\" instead.

An empty string indicates an unused optional field, the subsequent comma can be omitted if all fields of succeeding are unused.

otherwise, the comma is required. All unused fields at the end can be omitted.

The control block may only be placed once in the barcode text. Also, it shall be placed at end of the barcode text. The OninvalidChar
or OninvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur if the control block be placed more than once or it
isn't placed at end of the barcode text.

The following is an example of structured append symbol:

L]

Position index: 2

File ID: 001 287 023

File name: Unused

Segment count: 5

Time stame: 05:30:00 GMT on 3 December, 2008
Sender: Unused

Address: USA

File size: Unused

79

2D Barcode VCL Components User Manual

e Checksum: Unused

ABCDEFGHIJKLMN\s[2,001287023,,5,2008-12-03 05:30:00, ,USA]

Note, if the segment count is unused, a structured append terminator, "\t" escape sequence is required in last symbol within the set
of structured append symbols. Otherwise, it's optional. The "t" escape sequence shall be placed at the end of the barcode text, after
the structured append control block. For example:

ABCDEFGHIJKLMN \t

The AllowEscape property should be set to true in order to place the structured append control block and the terminator.

Properties: Methods:
e Image e Create
e Barcode e Destroy
e Data (¥) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight e GetCheckSum
e ShowQuietZone
Events:

® LeadingQuietZone

e OnChange
e TopQuietZone

e OnEncode

(*): The Data property, OninvalidDataLength and OnlinvalidDataChar events are available only for the Delphi/C++ Builder 2009 or

later.

TrailingQuietZone
BottomQuietZone
Locked

MinSize

MaxSize
StretchOrder
RowHeight
DefauldEncodeMode
DefauldTextEncodeMode
UseECIDescriptor
Options
AllowEscape

CurrentSize (Read only)

L]

OnlnvalidChar
OnlnvalidLength
OnlnvalidDataChar (*)
OnlinvalidDatalength (*)

OnDrawBarcode

80

2D Barcode VCL Components User Manual

4.1.14 TBarcode2D_MicroQRCode

The component is used to create the Micro QR Code barcode symbols. It's defined in the pMicroQRCode unit.

Micro QR Code is a very smallQR Code that fits applications that require a smaller space and use smaller amounts =%
of data, such as ID of printed circuit boards and electronics parts, etc. The efficiency of data encoding has been H
increased with the use of only one position detection pattern. Micro QR Code

Micro QR Code is a two-dimensional matrix symbology. It is not capable of storing much data. However, because it can store data
for each symbol size more efficiently than QR Code, the size of Micro QR Code symbols does not significantly increase, even though
the amount of data is increased.

The Micro QR Code was created by Toyota subsidiary Denso-Wave in 1994.
Error checking and correcting (ECC)

There are three user-selectable levels of error correction, as shown in following table, offering the capability of recovery from the
amounts of damage in the table:

Values of ECCLevel property ECC levels Recevory capacities (%) (approx.)
elLowest L 7
elMedium M 15
elQuality Q 25

You can use the ECCLevel property to specify the error correction code level for a Micro QR Code symbol. It can be one of these
values: elLowest, elMedium, and elQuality, corresponding to the error checking and correcting levels L, M, and Q. These values are
defined in the pMicroQRCode unit.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by current symbol
size will by used for creating more robust symbols. Note, the new level is always no lower than the level specified by the ECCLevel
property, and the symbol size will not be increased, it may be determined depending on the length of barcode text, and the error
correction code level specified by the ECCLevel property (see also the "Symbol sizes" section below). In other words, only the
remaining capacity in current symbol size will be used to upgrade the error correction code level. The property CurrentECCLevel can
be used to get the factual error correction code level.

Note, for version 1 Micro QR Code symbols, the error checking and correcting capacity is limited to error detection only. See also
the "Symbol sizes" section below.

Symbol sizes

There are four sizes of Micro QR Code symbol, referred to as version 1 to 4, in increasing order of data capacity. You can use the
MinVersion and the MaxVersion properties to specifiy the minimum and maximum sizes for a Micro QR Code symbol. They can be
one of values from 1 to 4 (defined in the pMicroQRCode unit), corresponding to the versions 1 to 4. The smallest symbol size that
accommodates the barcode text will be automatically selected between minimum and maximum symbol sizes. The CurrentVersion
property can be used to get the factual symbol size.

The symbol sizes and the maximum data capacity of each version are listed in following table:

81

2D Barcode VCL Components User Manual

i . Data capacities
Version | Symbol size (modules) | ECC level - - =
Numeric mode | Alphanumeric mode | Byte mode | Kanji mode
1 11*11 L 5 - - -
L 10 6 - -
2 13*13
M 8 5 - -
L 23 14 9 6
3 15*15
M 18 11 7 4
L 35 21 15 9
4 17 *17 M 30 18 13 8
Q 21 13 9 5

If the barcode text does not fill the maximum data capacity of the Micro QR Code symbol, remaining data capacity of the symbol will
be filled by using PAD characters. If the barcode text is so long that it cannot be encoded using the maximum symbol size specified
by the MaxVersion property, an OnlnvalidLength or OninvalidDatalLength (only for Delphi/C++ Builder 2009 or later) event will occur.

Quiet zones

The minimum quiet zone is equal to 2 modules on all four sides. So the minimum values ofLeadingQuietZone, TrailingQuietZone,
TopQuietZone, and BottomQuietZone properties are equal to 2.

Character set
All 8-bit values can be encoded. The default interpretation shall be:

e Forvalues 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII).
e For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).

Encoding modes

Micro QR Code has four encoding modes as Numeric mode, Alphanumeric mode, Kanji mode and Byte mode respectively in
decreasing order of encoding density. All 256 8-bits value are encoded by switching automatically between all 4 (the
AllowKanjiMode property is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding
modes. The character sets in each mode are listed in the following:

¢ Numeric mode: Encodes data from the decimal digit set (0 to 9, byte values 48 to 57).

¢ Alphanumeric mode: Encodes data from a set of 45 characters, i.e. 10 numeric digits (0 to 9) (byte values 48 to 57), 26
alphabetic characters (A - Z) (byte values 65 to 90) , and 9 symbols (SP, $, %, *, +, -, ., /, ;) (byte values 32, 36, 37, 42, 43, 45
to 47, 58 respectively).

Note, alphanumeric mode is not available in version 1 Micro QR Code symbols.
¢ Byte mode: All 8-bit values can be encoded.
Note, Byte mode is not available in version 1 or 2 Micro QR Code symbols.

¢ Kanji mode: The Kanji mode efficiently encodes Kanji characters in accordance with the Shift JIS system based on JIS X
0208. The Shift JIS values are shifted from the JIS X 0208 values. JIS X 0208 gives details of the shift coded representation.

It may be possible to achieve a smaller symbol size by using the Kanji mode compaction rules when an appropriate sequence
of byte values occurs in the data. You can set the AllowKanjiMode property to false in order to disable the Kaniji mode.

Note, Kanji mode is not available in version 1 or 2 Micro QR Code symbols.

The EncodePolicy property indicates how to use these encoding mode by the component. This property can be one of these values
(defined in the pMicroQRCode unit):

o epMixingOptimal: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode property
is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding modes. The
optimal combination of encoding modes will be used in order to minimize the symbol size.

82

2D Barcode VCL Components User Manual

¢ epMixingQuick: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode property is
set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding modes. The
combination of encoding modes may not be the optimal one, in order to optimize encoding speed.

¢ epSingleMode: The encoding mode will be selected automatically and applied to entire symbol, based on the barcode text,
in other words, the barcode text to be encoded will be analysed, and an appropriates lowest level (highest encoding density)
encoding mode will be selected, in order to minimize the symbol size, and the encoding mode will not be switched in the
sybmol. Note, the Kanji mode will not be used if the AllowKanjiMode property is set to false.

Properties: Methods:
e Image e Create
e Barcode e Destroy
e Data (¥) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight Events:
e ShowQuietZone
e OnChange

e LeadingQuietZone OnEncod
e OnEncode
e TopQuietZone
P e OninvalidChar
e TrailingQuietZone « OninvalidLength

e OnlinvalidDataChar (*)

e BottomQuietZone

e Locked

e OninvalidDataLength (*)
e Inversed

e OnDrawBarcode
e Mirrored

e EncodePolicy

e MaxSliceLen

e MinVersion

® MaxVersion

e ECClLevel

e ECCLevelUpgrade

e AllowKanjiMode

e CurrentVersion (Read only)

e CurrentECCLevel (Read only)

(*): The Data property, OninvalidDataLength and OnlinvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

83

2D Barcode VCL Components User Manual

4.1.15 TBarcode2D PDF417

The component is used to create the PDF417 Barcode symbols. It is defined in the pPDF417 unit. Im m%%ﬁm ‘H

PDF417 is a continuous, stacked 2D linear barcode symbol format used in a variety of applications, primarily PDF4L7
transport, identification cards, and inventory management. PDF stands for Portable Data File. It can encode all 8-bit values.

The PDF417 symbology was invented by Dr. Ynjiun P. Wang at Symbol Technologies in 1991.
Symbol size

Each PDF417 symbol consists of a stack of vertically aligned rows with a minimum of 3 rows (maximum 90 rows). Each stacked row
shall include a minimum of 1 symbol character column (maximum 30 symbol character columns), excluding start, stop and row
indicator columns. They are defined in the pPDF417Custom unit. The RowHeight property can be used to specify the height for each
stacked row, in modules. See diagram:

Start Start row Symbaol character Stop row Stop
pattern indicator colurmmns ndicator pattern
column column Vs 5 column column
r M A M ™,
|r Row 1
Row 2
Row 3

You can use the MinRows and the MaxRows properties to specifiy the minimum and maximum number of stacked rows for a
PDF417 symbol. And use theMinColumns and the MaxColumns properties to specifiy the minimum and maximum number of
symbol character columns for it. In other words, the MinRows and MinColumns properties specify a minimum symbol size, and the
MaxRows and MaxColumns properties specify a maximum symbol size. According to the priority order specified by the
StretchOrder property, the first symbol size that accommodates the barcode text will be automatically selected between the
minimum symbol size and the maximum symbol size.

You can use the CurrentRows property to get the factual number of stacked rows. And use the CurrentColumns property to get the
factual number of columns.

If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by the MaxRows and the
MaxColumns properties, an OninvalidLength or OninvalidDataLength (only for Delphi/C++ Builder 2009 or later) event will occur.

Quiet zones

The symbol shall include a quiet zone on all four sides. The minimum quiet zone is equal to 4 modules on all four sides. So the
minimum values of LeadingQuietZone, TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 4.

Error checking and correcting (ECC)

PDF417 symbols offer 9 levels of error correction, referred to as ECC 0 to ECC 8 respectively in increasing order of recovery
capacity. You can use the ECCLevel property to specify the error correction code level for a PDF417 symbol. It can be one of values
fromelEcc_0 toelEcc_8, corresponding to error correction code level from ECC 0 to ECC 8. They are defined in the
pPDF417Custom unit.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by current symbol
size will by used for creating more robust symbols. Note, the new level is always no lower than the level specified by the ECCLevel
property, and the symbol size will not be increased, it may be determined based on the length of barcode text, and the error
correction code level specified by the ECCLevel property, in other words, only the remaining capacity in current symbol size will be
used to upgrade the error correction code level. The CurrentECCLevel property can be used to get the factual error correction code
level.

Character set

84

2D Barcode VCL Components User Manual

e All 8-bit values can be encoded. The default interpretation shall be:

o For values 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII).
o For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).

This interpretation corresponds to EC1000003.

PDF417 has three unique data compaction modes as Text compaction mode, Numeric compaction mode, and Byte
compaction mode. All 8-bit values are encoded by switching internally between all 3 compaction modes:

o Text compaction mode: Permits all printable ASCII characters, i.e. ASClII values from 32 to 126 inclusive accordance
with ISO/IEC 646, as well as selected control characters (CR, HT, and LF).

The mode has four sub-modes:

s Alpha: Uppercase letters and space.
= Lower: Lowercase letters and space.
= Mixed: Numeric and some punctuations.

® Punctuation: Some punctuations.
The sub-mode will be switched automatically in order to minimize the symbol size.
o Numeric compaction mode: Permits efficient encoding of numeric data string.

o Byte compaction mode: Permits all 256 possible 8-bit byte values to be encoded. This includes all ASCII characters
value from 0 to 127 inclusive and provides for international character set support.

The compaction mode will be switched automatically in a PDF417 symbol in order to minimize the symbol size. Also, you can
manually switch the code set by using escape sequences "\900", 901", 902", and "\924". See also the "Escape
sequences" section below.

e The FNC1 characters can be encoded for compatibility with some existing applications. There are two mode FNC1
characters to identify symbols encoding messages formatted according to specific predefined industry or application
specifications, also the FNC1 character can be used as the data field separator:

o First position mode: FNC1 in this mode indicator identifies symbols encoding data formatted according to the GS1
Application Identifiers standard. For this purpose, it shall only be used once in a symbol and shall be placed at
beginning of the barcode text.

If any one of escape sequences in "903", "\904" and "\905" followed by an Application Identifier (2 or more digits) is
placed at beginning of barcode text, it represents a leading FNC1 character in "First position" mode, and implies a
mode latch to Text compaction mode or Numeric compaction mode. See also the "Escape sequences" section below.

Also, you can place an escape sequence "\" followed by an Application Identifier (2 or more digits) at beginning of
barcode text instead of the "\903", "\904" or "\905" escape sequence followed by the Application Identifier, to place the
FNC1 character in "First position" mode. The component will automatically select one of escape sequences from
"\903", 904" and "\905" depending on the barcode text, in order to minimize the symbol size.

The escape sequences "906", "\907", "\912", 914" and "\915" can be placed the FNC1 character in "First position"
mode too. See also the "Escape sequences" section below.

o Second position mode: FNC1 in this mode indicator identifies symbols formatted in accordance with specific industry
or application specifications previously agreed with AIM International. It is immediately followed by an application
indicator assigned to identify the specification concerned by AIM International. For this purpose, it shall only be used
once in a symbol and shall be placed at beginning of the barcode. An application indicator may take the form of any

single Latin alphabetic character from the set"a" to "z" and "A" to "Z", or a two-digit number.

If any one of escape sequences in "908" and "\909" followed by an application indicator (single Latin alphabetic
character from the set "a" to "Z" and "A" to "Z", or a two-digit number) is placed at beginning of barcode text, it

85

2D Barcode VCL Components User Manual

L]

represents a leading FNC1 character in "Second position" mode, and implies a mode latch to Text compaction mode
or Numeric compaction mode. See also the "Escape sequences" section below.

o Data field separator: The FNC1 character may also be used as a data field separator(i.e. at the end of a variable-
length data field), in which case it will be represented in the transmitted message as GS character (ASCII value 29). The
data field separator shall not be placed at beginning of barcode text.

If any one of escape sequences in "903", "\904" and "\905" is placed in the barcode text, but not at beginning of the
barcode text, it represents a data field separator, and implies a mode latch to Text compaction mode or Numeric
compaction mode. See also the "Escape sequences” section below.

Also, you can use the escape sequence "\" instead of the "\903", "\904" or "\905" to placed the FNC1 character as the
data field separator. The component will automatically select one of escape sequences from "\903", "\904" and "\905"
depending on the barcode text, in order to minimize the symbol size.

The appearance of an adjacent pair of repeated "903", "\904" or "\905" escape sequences will cause the decoder to
divide the transmission at that point (but without transmitting the two implied GS (ASCII value 29) characters
themselves).

The ECl indicator blocks can be encoded for the standardized encoding of message interpretation information. The escape
sequence "\e[<ECI_Numnerm>]" can be used to place the ECI indicator block to barcode text. See also the "Extended
Channel Interpretation (ECI)" section below.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert them to the
barcode text:

L]

L]

L]

\\: Insert a backslash to barcode text.

\5: Insert a 05 macro to barcode text. It's used to abbreviate the industry specific header 'T)>{RS}05{GS}" and trailer "{RS}
{EOT}", in order to reduce the size of symbol. It must only be placed once at beginning of the barcode text and it shall not be
used in Macro PDF417 symbols.

\6: Insert a 06 macro to barcode text. It's used to abbreviate the industry specific header 'T)>{RS}06{GS}" and trailer "{RS}
{EOT}", in order to reduce the size of symbol. It shall only be placed once at beginning of the barcode text and it shall not be
used in Macro PDF417 symbols.

\r: Instructs the reader to interpret the data contained within the PDF417 symbol as programming for reader initialisation. It
shall only be placed once at beginning of the barcode text. In the case of a Macro PDF417 initialisation sequence, it shall
appear in every symbol.

\e[<ECI_Numnerm>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation (ECI)"
section below.

\f: Insert a FNC1 character either in "First position" mode or as a data field separator, to the barcode text. One of 903",
"\904", and "\905" will be automatically selected instead of the "\", to insert to the symbol, depending on the barcode text. Ifit's
placed at beginning of barcode text, it represents a FNC1 character in "First position" mode, otherwise, it represents a data
field separator. See also the "Character set" section above.

Note, When the "poFirstFNC 1MatchAl01" is included in the value of Options property, if the "\f" followed by a SSC-14 number
(including Application Identifier 01 and 13-digit data, the checkdigit isn't required) is placed at beginnig of barcode, the "905"
will be selected to encode the FNC 1 character in order to reduce the symbol size (the leading Application Identifier 01 is not
encoded in the SSC-14 number).

\s[<Index>, <File_ID>, <File_Name>, <Amount>, <Time_Stamp>, <Sender>, <Address>, <File_Size>, <Checksum?>]
Insert additional control information to barcode text in order to create the Marco PDF417 symbol. See also the "Macro
PDF417" section below.

\,: Insert a comma to File name, Sender or Address field of the Marco PDF417 control information. It shall only be placed in

86

2D Barcode VCL Components User Manual

these fields of Marco PDF417 control information. See also the "Macro PDF417" section below.

e \t: Marco PDF417 terminator. If the segment count is unused in the control information of a Marco PDF417 symbols set, this
terminator is required in last symbol within the set of the Marco PDF417 symbols. Otherwise, it's optional. See also the
"Macro PDF417" section below.

e \<nnn>: Insert a function codeword. This "<nnn>" can be one of these values:
o 900: Manually places a mode latch to Text compaction mode.

o 901: Manually places a mode latch to Byte compaction mode. It shall be used when the total number of subsequent
bytes to be encoded is not a multiple of 6, otherwise, it will be change to "\924" automatically by the component.

o 902: Manually places a mode latch to Numeric compaction mode.

o 903: If it's placed at beginning of barcode text, it represents a leading FNC1 character in "First position" mode and
indicates that the PDF417 symbol's data output shall conform with the Code128 specification (UCC/EAN-128
emulation, the symbology identifier prefix is set to JC1 or]L3). Also it implies a mode latch to Mixed sub-mode of Text
compaction mode.

If it's placed in the barcode text, but not at beginning of the barcode text, it represents an FNC1 character as field
separator, and implies a mode latch to Alpha sub-mode of Text compaction mode.

o 904: If it's placed at beginning of barcode text, it represents a leading FNC1 character in "First position" mode and
indicates that the PDF417 symbol's data output shall conform with the Code128 specification (UCC/EAN-128
emulation, the symbology identifier prefix is set to]C1 or]L3). Also it implies a mode latch to Numeric compaction
mode.

If it's placed in the barcode text, but not at beginning of the barcode text, it represents an FNC1 character as field
separator, and implies a mode latch to Mixed sub-mode of Text compaction mode.

o 905: If the "905" followed by 13 required digits is placed at beginning of barcode text, it represents a leading FNC1
character in "First position” mode and encodes a SCC-14 number together with subsequent 13 digits (the Application
Identifier 01 is implied and the last checkdigit isn't required). It indicates that the PDF417 symbol's data output shall
conform with the Code 128 specification (UC C/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3).
Also itimplies a mode latch to Numeric compaction mode.

If the it is placed in the barcode text, but not at beginning of the barcode text, it represents an FNC 1 character as field
separator, and implies a mode latch to Numeric compaction mode.

o 906: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Mixed sub-mode of
Text compaction mode. It not only indicates that the PDF417 symbol's data output shall conform with the Code128
specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]JL3), but also indicates that a
linear symbol printed below the symbol is "linked" to the data of the symbol.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

o 907: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric compaction
mode. It not only indicates that the PDF417 symbol's data output shall conform with the Code128 specification
(UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but also indicates that a linear symbol
printed below the symbol is "linked" to the data of the symbol.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

o 908: The "908" followed by an application indicator (single Latin alphabetic character from the set "a" to "z" and "A" to
"Z", or a two-digit number) represents a leading FNC1 character in "Second position" mode, and indicates that the
PDF417 symbol's data output shall conform with the Code128 specification (used by AIM Global, the symbology
identifier prefix is set to JC2 or]L4). Also it implies a mode latch to Mixed sub-mode of Text compaction mode.

87

2D Barcode VCL Components User Manual

o

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlinvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

909: The "909" followed by an application indicator (single Latin alphabetic character from the set "a" to "Z" and "A" to
"Z", or a two-digit number) represents a leading FNC1 character in "Second position" mode, and indicates that the
PDF417 symbol's data output shall conform with the Code128 specification (used by AIM Global, the symbology
identifier prefix is set to]C2 or]L4). Also it implies a mode latch to Numeric compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OninvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

910: It indicates that the PDF417 symbol's data output shall conform with the Code128 specification (standard data
package, the symbology identifier prefix is set to JCO or]JL5), and implies a mode latch to Mixed sub-mode of Text
compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

911: It indicates that the PDF417 symbol's data output shall conform with the Code128 specification (standard data
package, the symbology identifier prefix is set to JCO or]L5), and implies a mode latch to Numeric compaction mode.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

912[AAYYMMDDBB]: It represents a leading FNC1 character in "First position" mode and implies a mode latch to
Numeric compaction mode. Not only does it indicate that the PDF417 symbol's data output shall conform with the
Code128 specification (UCC/EAN-128 emulation, the symbology identifier prefix is set to JC1 or]L3), but also it
encodes that the data begins with a 6-digit date field (Application Identifier is 11, 13, 15, or 17), and this date field may
be followed by an implied Application Identifier 10 or 21 as well:

s AA: Application Identifier of the 6-digit data field. It can be one of 11, 13, 15, or 17.

= YY: Year of the 6-digit data field.

= MM: Month of the 6-digit data field.

= DD: Day of the 6-digit data field.

= BB: An optional Application Identifier that follows the 6-digit data field. It can be one of 10 or 21.
For example:
\912[1199010721]

Also, You can encode the 6-digit date field and the subsequent Application Identifier by yourself:

\912994071

You can explicitly insert a mode latch to Numeric compaction mode after the "\912" by using the "-":

\912([-1199010721]

\912[-1994071

The escape sequence shall only be placed once at beginning of barcode text, otherwise the OninvalidChar or
OnlinvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

914: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric compaction
mode. It not only indicates that the PDF417 symbol's data output shall conform with the Code128 specification
(UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but also indicates that the data begins
with an implied Application Identifier is 10.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlinvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

88

2D Barcode VCL Components User Manual

o 915: It represents a leading FNC1 character in "First position" mode and implies a mode latch to Numeric compaction
mode. it not only indicates that the PDF417 symbol's data output shall conform with the Code128 specification
(UCC/EAN-128 emulation, the symbology identifier prefix is set to]C1 or]L3), but also indicates that the data begins
with an implied Application Identifier is 21.

The escape sequence shall only be placed once at beginning of barcode text, otherwise anOninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur.

o 916: Insert a 05 macro to barcode text. It shall only be placed once at beginning of the barcode text and it shall not be
used in Macro PDF417 symbols. It's completely equivalent to escape sequence "\5".

o 917: Insert a 06 macro to barcode text. It shall only be placed once at beginning of the barcode text and it shall not be
used in Macro PDF417 symbols. It's completely equivalent to escape sequence "\6".

o 918: It shall be used as a linkage flag to signal the presence of an associated linear component in a composite symbol
(other than an ECC.UCC composite symbol). The "\918" may be placed anywhere in the barcode text.

o 919: Reserved.

o 920: It shall be used as a linkage flag to signal the presence of an associated linear component in an ECC.UCC
composite symbol. The "\920" may be placed anywhere in the barcode text.

o 921: Instructs the reader to interpret the data contained within the PDF417 symbol as programming for reader
initialisation. It only shall be placed once at beginning of the barcode text. In the case of a Macro PDF417 initialisation
sequence, it shall appear in every symbol. It's completely equivalent to escape sequence "\r".

o 924: Manually places a mode latch to Byte compaction mode. It shall be used when the total number of subsequent
bytes to be encoded is an integer multiple of 6, otherwise, it will be changed to "\901" automatically by the component.

For some reader, the meanings of some function codewords don't conform with the PDF417 specification. You can use the
Options property to change the meanings of these fucntion codewords, in order to match the reader.

Note, the "{RS}" is ASCII character RS (ASCII value 30), the{GS}" is ASCII character GS (ASCII value 29), and the{EOT}" is
ASCIl character EOT (ASCll value 4).

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that of the
default character set. Five broad types of interpretations are supported in PDF417:

¢ International character sets (or code pages).

e General purpose interpretations such as encryption and compaction.

e User defined interpretations for closed systems.

e Transmission of control information for Macro PDF417.

e Transmission of uninterpreted PDF417 codewords.

The EClis identified by an integer (up to 6 digits) which is encoded in the PDF417 by the EClindicator block. The escape sequence
"\e[<ECI_Number>]"is used to place the EClindicator block to the barcode text:

e ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero is optional.
EClindicator blocks may be placed anywhere in the barcode text in a single or Macro PDF417 set of symbols. For example:

ABC\e[123]DEFabc\e[000003]def

Normally, the sub-mode invoked immediately prior to the EC| escape sequence is preserved for the encodation immediately after it.
Thus, sub-mode latches and shifts are preserved across an ECI escape sequence; and thus a sub-mode shift immediately before
an EClescape sequence is not ignored. If the value "polgnoreShiftBeforeECI" is included in the Options property, the sub-mode shift
immediately before an ECI escape sequence is ignored, but a sub-mode latch immediately before an ECI| escape sequence is
never ignored.

89

2D Barcode VCL Components User Manual

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until the end
of the barcode text, or until another EC|1 indicator block is encountered. Thus the interpretation of the ECI may straddle two or more
symbols.

Compact PDF417

In an environment where space considerations are a primary concern and symbol damage is unlikely (e.g. L 5 i
an office), the right row indicators may be omitted and the stop pattern may be reduced to one module Im%@g&kﬁ%%%
width bar. This reduction version is called Compact PDF417, which is fully decoder compatible with Compact PDF417
standard PDF417.

Note, the Compact PDF417 was referred as Truncated PDF417 in previous standard.
You can set the Compact property to true in order to generate a Compact PDF417 symbol.

Macro PDF417

Macro PDF417 provides a mechanism for the data in a file too large to be split into blocks and be represented in more than one
PDF417 symbol. This mechanism is similar to the structured append feature in other symbologies. Up to 99999 individual PDF417
symbols may be used to encode data in Macro PDF417.

Each Macro PDF417 symbol shall contain additional control information to enable the original data file to be properly reconstructed,
irrespective of the sequence in which the individual PDF417 symbols are scanned and decoded. The escape sequence "s[<Index>,
<File_ID>, <File_Name>, <Amount>, <Time_Stamp>, <Sender>, <Address>, <File_Size>, <Checksum?]is used to place the
control information to the barcode text:

e Index: The position index of the symbol within the set of Marco PDF417 symbols. It's an integer between 1 and 999999
(including the boundaries) in decimal string format. Note, the field is required.

¢ File_ID: The file ID. It is a variable length numeric sequence which contains one or more triads of digits. Each triad of digits is
an integer between 000 to 899 (the leading zero is required), in decimal string format. For each related Macro PDF417
symbol, the file ID should be specified using the same numeric sequence. This ensures that all reassembled symbol data
belongs to the same distributed file representation. Note, the field is required.

¢ File_Name: The file name. It's a text string with an implied reset to EC| 000002. The ECI escape sequences may be used in
order to set a different ECI within the field. Note, the field is optional.

e Amount: The segment count (identifying the total number of Macro PDF417 symbols in the distributed file). It's an integer
between 2 and 99999 (including the boundaries) in decimal string format. Note, the field is optional, if it's used, that field shall
appear in every segment.

o Time_Stamp: The time stamp. It indicates the time stamp on the source file. It's a GMT time in Yyyyy-mm-dd hh:nn:ss"
format:
o yyyy: 4-digit year.
o mm: 2-digit month, the leading zero is optional.
o dd: 2-digit day, the leading zero is optional.
o hh: 2-digit hour in 24 hours format, the leading zero is optional.
o nn: 2-digit minute, the leading zero is optional.
o ss: 2-digit second, the leading zero is optional.

Note, entire time portion or the minute and second portion are optional, i.e. the "yyyy-mm-dd", "yyyy-mm-dd hh", and
"yyyy-mm-dd hh:nn" formats are valid. If the hour, minute or second portion is not included, they defaults to 00.

e Sender: The sender, It's a text string with an implied reset to ECI1 000002. The EC| escape sequences may be used in order
to set a different ECI within the field. Note, the field is optional.

e Address: The address, It's a text string with an implied reset to EC| 000002. The ECI escape sequences may be used in

90

2D Barcode VCL Components User Manual

order to set a different ECI within the field. Note, the field is optional.

* File_Size: The file size. It's an integer in decimal string format, and indicates the size in bytes of the entire source file. Note,
the field is optional.

e Checksum: The checksum, It's an integer value of the 16-bit (2 bytes) CRC checksum using the CCITT-16 polynomial
computed over the entire source file, in decimal string format. You can use the GetCheckSum method to calculate the
checksum for a source file. Note, the field is optional.

The ECI escape sequences, "900", "\901", 902", and "\924" can be used in the File_Name, Sender and Address fields. If you
want place the comma in these fields, please use the "\," instead.

An empty string indicates an unused optional field, the subsequent comma can be omitted if all fields of succeeding are unused.
otherwise, the comma is required. All unused fields at the end can be omitted.

The control information may only be placed once in the barcode text. Also, it shall be placed at end of the barcode text. The
OnlnvalidChar or OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur if the control information be placed
more than once or itisn't placed at end of the barcode text.

The following is an example of Marco PDF417 symbol:

® Positionindex: 2

e File ID: 001 287 023

e File name: Unused

e Segment count: 5

e Time stame: 05:30:00 GMT on 3 December, 2008

e Sender: Unused

e Address: USA

* File size: Unused

® Checksum: Unused

ABCDEFGHIJKLMN\s[2,001287023,,5,2008-12-03 05:30:00, ,USA]

Note, if the segment count is unused, a Marco PDF417 terminator, t" escape sequence is required in last symbol within the set of

Marco PDF417 symbols. Otherwise, it's optional. The t" escape sequence shall be placed at the end of the barcode text, after the
control information. For example:

ABCDEFGHIJKLMN \t

The AllowEscape property should be set to true in order to place the control information and the terminator.

91

2D Barcode VCL Components User Manual

Properties: Methods:
e Image e Create
e Barcode e Destroy
e Data (¥) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size
e Orientation e CopyToClipboard
e Stretch e DrawTo
e LeftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight e GetCheckSum
e ShowQuietZone
Events:

e | eadingQuietZone

e OnChange
e TopQuietZone

e OnEncode

TrailingQuietZone
BottomQuietZone
Locked

MinRows
MaxRows
MinColumn
MaxColumn
StretchOrder
ECClLevel
ECClLevelUpgrade
RowHeight
Compact

Options

AllowEscape

L]

OnlinvalidChar
OnlnvalidLength
OnlnvalidDataChar (*)
OnlinvalidDatalength (*)

OnDrawBarcode

e CurrentRows (Read only)
e CurrentColumns (Read only)

e CurrentECCLevel (Read only)

(*): The Data property, OninvalidDataLength and OnlinvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.16 TBarcode2D_QRCode

The component is used to create the QR Code barcode symbols. It's defined in the pQRCode unit.

92

2D Barcode VCL Components User Manual

A QR Code is a two-dimensional matrix symbology, readable by QR scanners, mobile phones with a camera, and [=- E
smartphones. The code consists of black modules arranged in a square pattern on white background. It has position
detection patterns on three of its four corners. The information encoded can be text, URL or other data. E'I.-

QR Code
Common in Japan, where it was created by Toyota subsidiary Denso-Wave in 1994, the QR Code is one of the most

popular types of two-dimensional barcodes. Although initially used for tracking parts in vehicle manufacturing, QR Codes are now
used in a much broader context, including both commercial tracking applications and convenience-oriented applications aimed at
mobile phone users.

QR is the abbreviation for Quick Response, as the creator intended the code to allow its contents to be decoded at high speed.
Error checking and correcting (ECC)

There are four user-selectable levels of error correction, as shown in following table, offering the capability of recovery from the
amounts of damage in the table:

Values of ECCLevel property ECC levels Recevory capacities (%) (approx.)
elLowest L 7
elMedium M 15
elQuality Q 25
elHighest H 30

You can use the ECCLevel property to specify the error correction code level for a QR Code symbol. It can be one of these values:
elLowest, elMedium, elQuality, and elHighest, corresponding to the error checking and correcting levels L, M, Q, and H. These
values are defined in the pRCode unit.

If the ECCLevelUpgrade property is set to true, the highest error correction code level that can be accommodated by current symbol
size will by used for creating more robust symbols. Note, the new level is always no lower than the level specified by the ECCLevel
property, and the symbol size will not be increased, it may be determined depending on the length of barcode text, and the error
correction code level specified by the ECCLevel property (see also the "Symbol sizes" section below). In other words, only the
remaining capacity in current symbol size will be used to upgrade the error correction code level. The property CurrentECCLevel can
be used to get the factual error correction code level.

Symbol sizes

There are forty sizes of QR Code symbol. referred to as version 1 to 40, in increasing order of data capacity. You can use the
MinVersion and the MaxVersion properties to specifiy the minimum and maximum sizes for a QR Code symbol. They can be one of
values from 1 to 40 (defined in the pQRCode unit), corresponding to the versions 1 to 40. The smallest symbol size that
accommodates the barcode text will be automatically selected between minimum and maximum symbol sizes. The CurrentVersion
property can be used to get the factual symbol size.

These symbol sizes and the maximum data capacity of each version are listed in following table:

i . Data capacities
Version | Symbol size (modules) | ECC level - - —
Numeric mode | Alphanumeric mode | Byte mode | Kanji mode

L 41 25 17 10
M 34 20 14 8

1 21*21
Q 27 16 11 7
H 17 10 7 4
L 77 47 32 20
M 63 38 26 16

2 25*25
Q 48 29 20 12
H 34 20 14 8
L 127 77 53 32
M 101 61 42 26

3 29*29 Q 77 47 32 20

93

2D Barcode VCL Components User Manual

H 58 35 24 15
L 187 114 78 48
M 149 90 62 38
4 33*33
Q 111 67 46 28
H 82 50 34 21
L 255 154 106 65
M 202 122 84 52
5 3737
Q 144 87 60 37
H 106 64 44 27
L 322 195 134 82
M 255 154 106 65
6 41*41
Q 178 108 74 45
H 139 84 58 36
L 370 224 154 95
M 293 178 122 75
7 45*45
Q 207 125 86 53
H 154 93 64 39
L 461 279 192 118
M 365 221 152 93
8 4949
Q 259 157 108 66
H 202 122 84 52
L 522 335 230 141
M 432 262 180 111
9 53*53
Q 312 189 130 80
H 235 143 98 60
L 652 395 271 167
M 513 311 213 131
10 57 * 57
Q 364 221 151 93
H 288 174 119 74
L 772 468 321 198
M 604 366 251 155
11 61*61
Q 427 259 177 109
H 331 200 137 85
L 883 535 367 226
M 691 419 287 177
12 65 * 65
Q 489 296 203 125
H 374 227 155 96
L 1022 619 425 262
M 796 483 331 204
13 69 * 69
Q 580 352 241 149
H 427 259 177 109
L 1101 667 458 282
M 871 528 362 223
14 73*73
Q 621 376 258 159
H 468 283 194 120
L 1250 758 520 320
M 991 600 412 254
15 777
Q 703 426 292 180
H 530 321 220 136
L 1408 854 586 361

94

2D Barcode VCL Components User Manual

16 8181 M 1082 656 450 277
Q 775 470 322 198
H 602 365 250 154
L 1548 938 644 397
M 1212 734 504 310
17 8585
Q 876 531 364 224
H 674 408 280 173
L 1725 1046 718 442
M 1346 816 560 345
18 8989
Q 948 574 394 243
H 746 452 310 191
L 1903 1153 792 488
M 1500 909 624 384
19 93*93
Q 1063 644 442 272
H 813 493 338 208
L 2061 1249 858 528
M 1600 970 666 410
20 97+ 97
Q 1159 702 482 297
H 919 557 382 235
L 2232 1352 929 572
M 1708 1035 711 438
21 101 * 101
Q 1224 742 509 314
H 969 587 403 248
L 2409 1460 1003 618
M 1872 1134 779 480
22 105 * 105
Q 1358 823 565 348
H 1056 640 439 270
L 2620 1588 1091 672
M 2059 1248 857 528
23 109 * 109
Q 1468 890 611 376
H 1108 672 461 284
L 2812 1704 1171 721
M 2188 1326 911 561
24 113*113
Q 1588 963 661 407
H 1228 744 511 315
L 3057 1853 1273 784
M 2395 1451 997 614
25 117 * 117
Q 1718 1041 715 440
H 1286 779 535 330
L 3283 1990 1367 842
M 2544 1542 1059 652
26 121121
Q 1804 1094 751 462
H 1425 864 593 365
L 3517 2132 1465 902
M 2701 1637 1125 692
27 125* 125
Q 1933 1172 805 496
H 1501 910 625 385
L 3669 2223 1528 940
M 2857 1732 1190 732
28 129* 129

95

2D Barcode VCL Components User Manual

Q 2085 1263 868 534
H 1581 958 658 405
L 3909 2369 1628 1002
M 3035 1839 1264 778
29 133*133
Q 2181 1322 908 559
H 1677 1016 698 430
L 4158 2520 1732 1066
M 3289 1994 1370 843
30 137 *137
Q 2358 1429 982 604
H 1782 1080 742 457
L 4417 2677 1840 1132
M 3486 2113 1452 894
31 141 *141
Q 2473 1499 1030 634
H 1897 1150 790 486
L 4686 2840 1952 1201
M 3693 2238 1538 947
32 145* 145
Q 2670 1618 1112 684
H 2022 1226 842 518
L 4965 3009 2068 1273
M 3909 2369 1628 1002
33 149 * 149
Q 2805 1700 1168 719
H 2157 1307 898 553
L 5253 3183 2188 1347
M 4134 2506 1722 1060
34 153 * 153
Q 2949 1787 1228 756
H 2301 1394 958 590
L 5529 3351 2303 1417
M 4343 2632 1809 1113
35 157 * 157
Q 3081 1867 1283 790
H 2361 1431 983 605
L 5836 3537 2431 1496
M 4588 2780 1911 1176
36 161 *161
Q 3244 1966 1351 832
H 2524 1530 1051 647
L 6153 3729 2563 1577
M 4775 2894 1989 1224
37 165 * 165
Q 3417 2071 1423 876
H 2625 1591 1093 673
L 6479 3927 2699 1661
M 5039 3054 2099 1292
38 169 * 169
Q 3599 2181 1499 923
H 2735 1658 1139 701
L 6743 4087 2809 1729
M 5313 3220 2213 1362
39 173*173
Q 3791 2298 1579 972
H 2927 1774 1219 750
L 7089 4296 2953 1817
M 5596 3391 2331 1435
40 vrrear Q 3993 2420 1663 1024
H 3057 1852 1273 784

96

2D Barcode VCL Components User Manual

If the barcode text does not fill the maximum data capacity of the QR Code symbol, remaining data capacity of the symbol will be
filled by using PAD characters. If the barcode text is so long that it cannot be encoded using the maximum symbol size specified by
the MaxVersion property, an OnlnvalidLength or OninvalidDatalLength (only for Delphi/C++ Builder 2009 or later) event will occur.

Quiet zones

The minimum quiet zone is equal to 4 modules on all four sides. So the minimum values ofLeadingQuietZone, TrailingQuietZone,
TopQuietZone, and BottomQuietZone properties are equal to 4.

Character set
e All 8-bit values can be encoded. The default interpretation shall be:

o For values 0 to 127, in accordance with the U.S. national version of ISO/IEC 646 (ASCII).
o For values 128 - 255, in accordance with ISO/IEC 8859-1 (Extended ASCII).

This interpretation corresponds to EC1000003.

e The FNC1 characters can be encoded for compatibility with some existing applications. In QR Code symbology, there are two
mode FNC1 characters to identify symbols encoding messages formatted according to specific predefined industry or
application specifications:

o First position: FNC1 in this mode indicator identifies symbols encoding data formatted according to the GS1
Application Identifiers standard. For this purpose, it shall only be used once in a symbol and shall be placed at
beginning of the barcode text, and after any EClindicator block or structured append block (if exists).

The escape sequence "\t" or "\f" followed by an Application Identifier (2 or more digits), can be used to placed the
FNC1 character in "First position" mode to barcode text. For example, the barcode symbol (01)00012345678905 can
be represented using any one of following sequences:

\t0100012345678905

\£0100012345678905

Where the GS1 specifications call for the FNC1 character to be used as a data field separator (i.e. at the end of a
variable-length data field), QR Code symbols shall use the GS character (byte value 29) to perform this function. In this
case, any one of "\g", "\d", "\t", and "\f" escape sequences can be used to place the GS character to the barcode text.
For example:

0001234567890521512\£2018

o Second position: FNC1 in this mode indicator identifies symbols formatted in accordance with specific industry or
application specifications previously agreed with AIM International. It is immediately followed by an application indicator
assigned to identify the specification concerned by AIM International. For this purpose, it shall only be used once in a
symbol and shall be placed at beginning of the barcode, and after any ECI indicator block or structured append block (if
exists). An application indicator may take the form of any single Latin alphabetic character from the set "a" to "z" and
"A" to "Z", or a two-digit number.

There are two ways to place a FNC1 character in "Second position” mode:

= The escape sequence "\d" followed by an application indicator (single Latin alphabetic character from the set "a"
to "Z" and "A" to "Z", or a two-digit number) can be used to placed the FNC1 character in "Second position
mode to barcode text. For example:

\dA0001234567890

\d010001234567890

= The escape sequence "f[<Al>]" can be used to placed the FNC1 character in "Second position" mode to
barcode text:

= Al The application indicator (single Latin alphabetic character from the set "a" to "z" and "A" to "Z", or a

97

2D Barcode VCL Components User Manual

two-digit number).
For example:
\f[A]0001234567890

\£[01]0001234567890

Where the application specifications call for the FNC1 character to be used as a data field separator, QR Code
symbols shall use the GS character (byte value 29) to perform this function. In this case, any one of \g", "\d", "\t", and "\f"
escape sequences can be used to place the GS character to the barcode text. For example:

0001234567890521512\g2018

Note, the "First position" and "Second position" are not used in a literal sense but is a historical reference to the position of
the FNC1 symbol character in Code 128 symbols.

e The ECI indicator blocks can be encoded for the standardized encoding of message interpretation information. The escape
sequence "\e[<EC|_Number>]" can be used to place the ECI indicator block to barcode text. See also the "Extended Channel
Interpretation (ECI)" section below.

The AllowEscape property should be set to true in order to place the FNC1 characters or the EClindicator blocks.

Escape sequences

If the AllowEscape property is set to true, following escape sequences are supported by the component, you can insert them to the
barcode text:

¢ \\ Insert a backslash to barcode text.
e \f: Insert a FNC1 character to barcode text. There are three usages:

o Inserta FNC1 character in "First position" mode to the barcode text. In this case, it shall only be used once in a symbol
and shall be placed at beginning of the barcode text, and after any ECI indicator block or structured append block (if
exists), followed by an Application Identifier (2 or more digits). For example:

\£0100012345678905

o Insert a FNC1 character in "Second position" mode to the barcode text. In this case, it shall only be used once in a
symbol and shall be placed at beginning of the barcode text, and after any ECI indicator block or structured append
block (if exists), followed by an application indicator (single Latin alphabetic character from the set "a" to "z" and "A" to
"Z", or a two-digit number), which is enclosed in square brackets. For example:

\f 00012345678905

o Insert a GS character (ASCII value 29) as the data field separator to the barcode text. In this case, it can be placed
anywhere but at beginning of the barcode text. For example:

0001234567890521512\£2018
See also the "Character set" section above.

e \t: Insert a FNC1 character in "First position" mode to barcode text, or insert a GS character (ASCII value 29) as the data field
separator to the barcode text. There are two usages:

o Inserta FNC1 character in "First position" mode to the barcode text. It's completely equivalent to escape sequence \f"
that inserts the FNC1 character in "First position" mode. In this case, it shall only be used once in a symbol and shall be
placed at beginning of the barcode text, and after any EC| indicator block or structured append block (if exists), followed
by an Application Identifier (2 or more digits). For example:

\t0100012345678905

o Insert a GS character (ASCII value 29) as the data field separator to the barcode text. It's completely equivalent to the

98

2D Barcode VCL Components User Manual

escape sequence "\f" that inserts the FNC1 character as the data field separator. In this case, it can be placed
anywhere but at beginning of the barcode text. For example:

0001234567890521512\t2018

See also the "Character set" section above.

e \d: Insert a FNC1 character in "Second position" mode to barcode text, or insert a GS character (ASCII value 29) as the data
field separator to the barcode text. There are two usages:

o Inserta FNC1 character in "Second position" mode to the barcode text. It's completely equivalent to escape sequence
"\f* that inserts the FNC1 character in "Second position" mode. In this case, it shall only be used once in a symbol and
shall be placed at beginning of the barcode text, and after any E Cl indicator block or structured append block (if exists),
followed by an application indicator (single Latin alphabetic character from the set "a" to "z" and "A" to "Z", or a two-
digit number). For example:

\d0100012345678905

o Insert a GS character (ASCII value 29) as the data field separator to the barcode text. It's completely equivalent to the
escape sequence "\f' that inserts the FNC1 character as the data field separator. In this case, it can be placed
anywhere but at beginning of the barcode text. For example:

0001234567890521512\d2018
See also the "Character set" section above.

e \g: Insert a GS character (ASCII value 29) to the barcode text. When FNC1 is used as a data field separator, it can be used
instead of the FNC1 character. For example:

0001234567890521512\g2018
See also the "Character set" section above.

e \e[<ECI_Number>]: Insert an ECI indicator block to barcode text. See also the "Extended Channel Interpretation (ECI)"
section below.

¢ \s[<Index>, <Amound>, <Parity>] Insert a structured append block to barcode text in order to create the symbol in a
structured append. See also the "Structured append” section below.

Encoding modes

QR Code has four encoding modes as Numeric mode, Alphanumeric mode, Kanji mode and Byte mode respectively in decreasing
order of encoding density. All 256 8-bits value are encoded by switching automatically between all 4 (the AllowKanjiMode property is
set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding modes. The character sets
in each mode are listed in the following:

¢ Numeric mode: Encodes data from the decimal digit set (0 to 9) (byte values 48 to 57).

¢ Alphanumeric mode: Encodes data from a set of 45 characters, i.e. 10 numeric digits (0 to 9) (byte values 48 to 57), 26
alphabetic characters (A - Z) (byte values 65 to 90) , and 9 symbols (SP, $, %, *, +, -, ., /, ;) (byte values 32, 36, 37, 42, 43, 45
to 47, 58 respectively).

¢ Byte mode: All 8-bit values can be encoded.

¢ Kaniji mode: The Kanji mode efficiently encodes Kanji characters in accordance with the Shift JIS system based on JIS X
0208. The Shift JIS values are shifted from the JIS X 0208 values. JIS X 0208 gives details of the shift coded representation.

It may be possible to achieve a smaller symbol size by using the Kanji mode compaction rules when an appropriate sequence
of byte values occurs in the data. You can set the AllowKanjiMode property to false in order to disable the Kanji mode.

The EncodePolicy property indicates how to use these encoding mode by the component. This property can be one of these values
(defined in the pQRCode unit):

99

2D Barcode VCL Components User Manual

¢ epMixingOptimal: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode property
is set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding modes. The
optimal combination of encoding modes will be used in order to minimize the symbol size.

¢ epMixingQuick: All 256 8-bits values are encoded by switching automatically between all 4 (the AllowKanjiMode property is
set to true) or 3 (the Kanji mode will not be used if the AllowKanjiMode property is set to false) encoding modes. The
combination of encoding modes may not be the optimal one, in order to optimize encoding speed.

¢ epSingleMode: The encoding mode will be selected automatically and applied to entire symbol, based on the barcode text,
in other words, the barcode text to be encoded will be analysed, and an appropriates lowest level (highest encoding density)
encoding mode will be selected, in order to minimize the symbol size, and the encoding mode will not be switched in the
sybmol. Note, the Kaniji mode will not be used if the AllowKanjiMode property is set to false.

Extended Channel Interpretation (ECI)

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that of the
default character set. Four broad types of interpretations are supported in QR Code:

¢ International character sets (or code pages).

e General purpose interpretations such as encryption and compaction.

e User defined interpretations for closed systems.

e Control information for structured append in unbuffered mode.
The ECI protocol provides a consistent method to specify particular interpretations on byte values before printing and after

decoding. The ECl is identified by an integer (up to 6 digits) which is encoded in the QR Code symbol by the ECI indicator block.
The escape sequence "\e[<ECI_Number>]" is used to place the EClindicator block to the barcode text:

e ECI_Number: The ECI number, it's an integer between 0 and 999999 (including the boundaries), the leading zero is optional.

ECl indicator blocks may be placed anywhere in the barcode text in a single or structured append set of QR Code symbols. For
example:

ABC\e[123]DEFabc\e[000003]def
The default interpretation for QR Code is ECI1 000003 representing the ISO/IEC 8859-1 character set.

The AllowEscape property should be set to true in order to place the ECI indicator blocks. Any ECI invoked shall apply until the end
of the barcode text, or until another ECI indicator block is encountered. Thus the interpretation of the ECI| may straddle two or more
symbols.

Structured append

In order to handle larger messages than are practical in a single symbol, a data message can be distributed across several QR
Code symbols. Up to 16 QR Code symbols may be appended in a structured format to convey more data. If a symbol is part of a
structured append this shall be indicated by a structured append block in barcode text. The escape sequence "s[<Index>,
<Amount>, <Parity>]" is used to place the structured append block to the barcode text:

¢ Index: The position index of the symbol within the set of QR Code symbols in the structured append format. It's an integer
between 1 and 16 (including the boundaries) in string format.

e Amount: The total amount of the symbol within the set of QR Code symbols in the structured append format. It's an integer
between 2 and 16 (including the boundaries) in string format.

o Parity: The parity data. It shall be an 8-bit byte value obtained by using the GetParity method with the original input data as its
parameter. It is identical in all symbols in the structured append, enabling it to be verified that all symbols read form part of the
same structured append message.

The AllowEscape property should be set to true in order to place the structured append block. The structured append block may only
be placed once in the barcode text. Also, it shall be placed at beginning of the barcode text. The OninvalidChar or
OnlnvalidDataChar (only for Delphi/C++ Builder 2009 or later) event will occur if the structured append block be placed more than

100

2D Barcode VCL Components User Manual

once, or itisn't placed at beginning of the barcode text. The following is the examples of structured append:

\s[2, 5, 125]ABCDEFGabcdefgl234567890

Properties: Methods:
* Image e Create
e Barcode e Destroy
e Data (¥) e Assign
e Module e Clear
e BarColor e Draw
e SpaceColor e Size

e Orientation

CopyToClipboard

e Stretch e DrawTo
e | eftMargin e DrawToSize
e TopMargin e Print
e BarcodeWidth e PrintSize
e BarcodeHeight e GetParity
e ShowQuietZone
Events:

e |eadingQuietZone

e OnChange
e TopQuietZone

e OnEncode

e TrailingQuietZone

e BottomQuietZone

L]

OnlinvalidChar
OnlnvalidLength

e Locked

e OninvalidDataChar (*)
® Inversed

e OninvalidDataLength (*)
e Mirrored

e EncodePolicy

e MaxSliceLen

* MinVersion

* MaxVersion

e ECCLevel

e ECCLevelUpgrade
e AllowKanjiMode

e AllowEscape

OnDrawBarcode

e CurrentVersion (Read only)

e CurrentECCLevel (Read only)

(*): The Data property, OninvalidDataLength and OninvalidDataChar events are available only for the Delphi/C++ Builder 2009 or
later.

4.1.17 TBarcode2D RSS14

101

2D Barcode VCL Components User Manual

The component is used to create the RSS-14 (Reduce Space Symbology) barcode symbols, including RSS-14 (Standard), RSS-14
Truncated, RSS-14 Stacked, and RSS-14 Stacked Omnidirectional. It's defined in the pRss14 unit.

RSS-14 is a continuous linear symbology capable encoding the full GS1 14-digit EAN.UCC item identification

number (Global Trade ltem Numbers, GTINs). The first digit represents the Indicator digit to indicate packaging ‘ ‘I I |||| ”
level. The following twelve digits are the GS1 Company Prefix and the ltem Reference. The last digit represents {01)20012345678303
the Check Digit. A leading Application Identifier (01) is implied and is not encoded in the symbol. RES-14 (Standard)

Styles
There are four styles (versions) of RSS-14 symbols, as described in following list:

e Standard: The standard style RSS-14 barcode symbol encodes the full 14-digit EAN.UCC item
identification (Global Trade Item Numbers, GTINs) in a symbol that can be omnidirectionally scanned by || ‘ |I I HHl |||| ”
suitably configured point-of-sale laser scanners. RSS5-14 (Standard)

e Truncated: RSS-14 Truncated is structured and encoded in the same way as the standard RSS-14 (0 (OO IO
format, except its height is reduced to a 13 modules minimum. It may be used for small items, instead of =~ RS5-14 {Truncated}
RSS Limited It may also be used when the four-column 2D component is desired in order to minimize the height of an
EAN.UCC Composite symbol.

RSS-14 Truncated is designed to be read by scanners such as wands, handheld lasers, and linear and 2D imagers. It cannot
be read efficiently by omnidirectional flat-bed and presentation scanners.

o Stacked: RSS-14 Stacked is an RSS-14 Truncated two-row format. It may be used for small items instead]
of RSS Limitedwhen the available space is too narrow for RSS Limited Moreover, the narrower width of ~RS5-14 (Stacked)
RSS-14 Stacked might allow for a larger module width and potentially higher print quality. However,RSS Limitedor RSS-14
Truncated should be used in preference to the stacked format whenever space permits without reducing module width, as they
are easier to scan with a wand or linear scanner.

RSS-14 Stacked is designed to be read by scanners such as wands, handheld lasers, and linear and 2D imagers. It cannot
be read efficiently by omnidirectional flat-bed and presentation scanners.

e Stacked Omnidirectional RSS-14 Stacked Omnidirectional is a full height RSS-14 two-row
format. It can be used instead of RSS-14 for omnidirectional scanning applications where the ‘ I ‘
different aspect ratio is needed. ‘ ‘

You can use the Style property to specify which style will be used. It can be one of these values: rsStandard, RSS-14
rsTruncated, rsStacked, and rsStackedOmnidirectional, corresponding to the Standard, Truncated, [(Stacked Omnidirectional)
Stacked, and Stacked Omnidirectional styls. They are defined in the pRss14 unit.

Symbol size

¢ RSS-14 (Standard): Normally, the overall size of this format is 96 modules wide by a minimum of 33 modules high. You can
use the TotalHeight property to specify the height for an RSS-14 (Standard) symbol, in modules.

e RSS-14 Truncated: Normally, the overall size of this format is 96 modules wide by a minimum of 13 modules high. You can
use the TotalHeight property to specify the height for an RSS-14 Truncated symbol, in modules.

o RSS-14 Stacked: Normally, the top row is 5 modules high and the bottom row is 7 modules high with a 1 module (minimum)
high separator pattern between the two rows. So the overall size of this format is 50 modules wide by 13 modules high. You
can use the SeparatorRowHeight property to specify the height of separator pattern between the two rows, in modules. And
use the TotalHeight property to specify the total height for an RSS-14 Stacked symbol, in modules. the height of separator
pattern is included in the total height.

¢ RSS-14 Stacked Omnidirectional Normally, Each row is 33 modules high minimum with a 3 modules high separator
pattern between the two rows. So the overall size of this format is 50 modules wide by 69 modules high minimum. You can use
the SeparatorRowHeight property to specify the height of separator pattern between the two rows, in modules. And use the
TotalHeight property to specify the total height for an RSS-14 Stacked Omnidirectional symbol, in modules. the height of
separator pattern is included in the total height.

102

2D Barcode VCL Components User Manual

If both the Link2D and Show2DSeparator properties are set to Ture, a contiguous separator pattern is represented and its minimum
height is 1 module (the pattern height can be specified by the SeparatorRowHeight property). In this case, the height of the RSS-14
symbol will be reached to increase the contiguous separator pattern height.

Quiet zones

No quiet zones is required outside the bounds of the RSS-14 symbol. The first and last elements may appear wider than one module
without affecting the symbol if the adjacent background area is the same color. So the minimum values of LeadingQuietZone,
TrailingQuietZone, TopQuietZone, and BottomQuietZone properties are equal to 0.

Character set

e All 10 numeric characters, i.e. 0 through 9.
Check digit

All styles of RSS-14 symbols have a check digit, it is a form of redundancy check used for error detection. It consists of a single
numeric character computed from the other character in the EAN.UCC item identification number.

If the AutoCheckDigit property is set to false, the check digit shall be included in the barcode text. Otherwise, It wii be appended
automatically by the component, so the check digit isn't required in the barcode text.

Data capactiy

All styles of RSS-14 symbologies encode the full GS1 14-digit EAN.UCC item identification number (Global Trade ltem Numbers
GTINs) in a symbol, including a leading indicator digit, 12 data characters (GS1 Company Prefix and the ltem Reference), and a
check digit. Note, A leading Application Identifier (01) is implied and is not encoded in the symbol, so it isn't required in the barcode
text.

If the AutoCheckDigit property is set to false, the check digit shall be included in the barcode text, so the length of barcode text shall
is 14 numeric characters, and the last numeric character in the barcode text is the check digit.

If the AutoCheckDigit property is set to true, the check digit will be appended automatically by the component, so the length of
barcode text shall is 13 numeric characters, and the check digit isn't required in the barcode text.

Composite symbols

Any styles of an RSS-14 barcode symbol can be used together with a CC-A or CC-B barcode symbol to create